↓ Skip to main content

In Silico Identification of Mimicking Molecules as Defense Inducers Triggering Jasmonic Acid Mediated Immunity against Alternaria Blight Disease in Brassica Species

Overview of attention for article published in Frontiers in Plant Science, April 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users
facebook
1 Facebook page

Citations

dimensions_citation
41 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
In Silico Identification of Mimicking Molecules as Defense Inducers Triggering Jasmonic Acid Mediated Immunity against Alternaria Blight Disease in Brassica Species
Published in
Frontiers in Plant Science, April 2017
DOI 10.3389/fpls.2017.00609
Pubmed ID
Authors

Rajesh K. Pathak, Mamta Baunthiyal, Rohit Shukla, Dinesh Pandey, Gohar Taj, Anil Kumar

Abstract

Alternaria brassicae and Alternaria brassicicola are two major phytopathogenic fungi which cause Alternaria blight, a recalcitrant disease on Brassica crops throughout the world, which is highly destructive and responsible for significant yield losses. Since no resistant source is available against Alternaria blight, therefore, efforts have been made in the present study to identify defense inducer molecules which can induce jasmonic acid (JA) mediated defense against the disease. It is believed that JA triggered defense response will prevent necrotrophic mode of colonization of Alternaria brassicae fungus. The JA receptor, COI1 is one of the potential targets for triggering JA mediated immunity through interaction with JA signal. In the present study, few mimicking compounds more efficient than naturally occurring JA in terms of interaction with COI1 were identified through virtual screening and molecular dynamics simulation studies. A high quality structural model of COI1 was developed using the protein sequence of Brassica rapa. This was followed by virtual screening of 767 analogs of JA from ZINC database for interaction with COI1. Two analogs viz. ZINC27640214 and ZINC43772052 showed more binding affinity with COI1 as compared to naturally occurring JA. Molecular dynamics simulation of COI1 and COI1-JA complex, as well as best screened interacting structural analogs of JA with COI1 was done for 50 ns to validate the stability of system. It was found that ZINC27640214 possesses efficient, stable, and good cell permeability properties. Based on the obtained results and its physicochemical properties, it is capable of mimicking JA signaling and may be used as defense inducers for triggering JA mediated resistance against Alternaria blight, only after further validation through field trials.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 31 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 26%
Student > Ph. D. Student 7 23%
Student > Bachelor 2 6%
Student > Master 2 6%
Other 1 3%
Other 1 3%
Unknown 10 32%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 35%
Biochemistry, Genetics and Molecular Biology 6 19%
Immunology and Microbiology 2 6%
Chemistry 2 6%
Unknown 10 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 June 2017.
All research outputs
#14,283,088
of 22,971,207 outputs
Outputs from Frontiers in Plant Science
#7,998
of 20,408 outputs
Outputs of similar age
#171,125
of 309,761 outputs
Outputs of similar age from Frontiers in Plant Science
#293
of 584 outputs
Altmetric has tracked 22,971,207 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,408 research outputs from this source. They receive a mean Attention Score of 4.0. This one has gotten more attention than average, scoring higher than 59% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 309,761 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 584 others from the same source and published within six weeks on either side of this one. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.