↓ Skip to main content

QTL Mapping for Yield and Resistance against Mediterranean Corn Borer in Maize

Overview of attention for article published in Frontiers in Plant Science, May 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (51st percentile)

Mentioned by

twitter
4 X users

Readers on

mendeley
41 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
QTL Mapping for Yield and Resistance against Mediterranean Corn Borer in Maize
Published in
Frontiers in Plant Science, May 2017
DOI 10.3389/fpls.2017.00698
Pubmed ID
Authors

José C. Jiménez-Galindo, Bernardo Ordás, Ana Butrón, Luis F. Samayoa, Rosa A. Malvar

Abstract

Introduction: The Mediterranean corn borer (MCB), Sesamia nonagrioides, is a major pest of maize, Zea mays, in Mediterranean countries, inflicting significant kernel yield losses. For that reason, it necessary to know the genetic mechanisms that regulate the agronomic and resistance traits. A quantitative trait loci (QTL) mapping study for yield, resistance against MCB attack, and other relevant agronomic traits was performed using a recombinant inbred line (RIL) population derived from the cross A637 × A509 that is expected to segregate for yield, and ear, and stalk resistance to MCB. 171 RILs were evaluated in 2014 and 2015 at Pontevedra, Spain, along with the two parental inbreds A637 and A509 using a 13 × 14 single lattice design with two replications. A genetic map with 285 SNP markers was used for QTL analysis. Our objectives were to detect QTL for resistance to MCB and tolerance-related agronomic traits, to gain insights on the genetic relationship between resistance to MCB attack and yield, and to establish the best way for simultaneously improving yield and resistance to MCB. Results: Twelve significant QTL were detected for agronomic and resistance traits. QTL at bins 1.10 and 5.04 were especially interesting because the same allelic variant at these QTL simultaneously improved yield and insect resistance. In contrast, in the region 8.04-8.05, QTL showed opposite effects for yield and resistance. Several QTL for indexes which combine yield and resistance traits were found especially in the region 10.02-10.03. Conclusions: Selecting genotypes with the favorable allele of QTL on chromosome 5 (bin 5.01) will decrease tunnel length without affect yield, silking and plant height and QTL on the region 5.04 could be used to improve stalk resistance and yield simultaneously. An allele of QTL on bin 9.07 will increase ear resistance to MCB attack but it could produce later varieties while favorable allele in region 1.10 could improve ear and stalk resistance and yield without secondary negative effects. The region 8.03-8.05 mainly but also the region 10.02-10.03 and 5.04 may play an important role to elucidate the association between yield, other agronomic traits and MCB resistance.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 41 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 41 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 27%
Student > Ph. D. Student 9 22%
Student > Master 7 17%
Lecturer 2 5%
Student > Bachelor 1 2%
Other 2 5%
Unknown 9 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 26 63%
Biochemistry, Genetics and Molecular Biology 3 7%
Chemistry 1 2%
Unknown 11 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 June 2017.
All research outputs
#14,067,995
of 22,979,862 outputs
Outputs from Frontiers in Plant Science
#7,354
of 20,432 outputs
Outputs of similar age
#167,509
of 310,586 outputs
Outputs of similar age from Frontiers in Plant Science
#266
of 619 outputs
Altmetric has tracked 22,979,862 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,432 research outputs from this source. They receive a mean Attention Score of 4.0. This one has gotten more attention than average, scoring higher than 60% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 310,586 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 619 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.