↓ Skip to main content

Agronomic Trait Variations and Ploidy Differentiation of Kiwiberries in Northwest China: Implication for Breeding

Overview of attention for article published in Frontiers in Plant Science, May 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Agronomic Trait Variations and Ploidy Differentiation of Kiwiberries in Northwest China: Implication for Breeding
Published in
Frontiers in Plant Science, May 2017
DOI 10.3389/fpls.2017.00711
Pubmed ID
Authors

Ying Zhang, Caihong Zhong, Yifei Liu, Qiong Zhang, Xiaorong Sun, Dawei Li

Abstract

Polyploid plants often have higher biomass and superior crop qualities. Breeders therefore search for crop germplasm with higher ploidy levels; however, whether higher ploidy levels are associated with better performance remains unclear. Actinidia arguta and related species, whose commercialized fruit are referred to as kiwiberries, harbor a series of ploidy races in nature, offering an opportunity to determine the link between ploidy levels and agronomic traits. In the present study, we determined the ploidy levels of A. arguta var. arguta, A. arguta var. giraldii, and A. melanandra in 16 natural populations using flow cytometry, and examined 31 trait variations in fruits, leaves and flowers by field observations, microscopic examination and laboratory analyses. Our results showed that octaploid and decaploid A. arguta var. giraldii had larger dimension of leaves than tetraploid A. arguta var. arguta and A. melanandra, but their fruits were significantly smaller. In addition, A. arguta var. giraldii (8x and 10x) had higher contents of nutrients such as ascorbic acid and amino acids; however, some important agronomic traits, including the content of total sugar and total acid, were significantly lower in the octaploids and decaploids. Moreover, octaploids and decaploids did not result in greater ecological adaptability for the challenging environments and climates. In conclusion, the differentiation of ecological adaptability and traits among natural kiwiberries' cytotypes suggested that higher ploidy levels are not inevitably advantageous in plants. The findings of A. arguta and related taxa in geographical distribution and agronomic trait variations will facilitate their germplasm domestication.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 29%
Student > Doctoral Student 3 21%
Student > Ph. D. Student 2 14%
Student > Master 2 14%
Unknown 3 21%
Readers by discipline Count As %
Agricultural and Biological Sciences 10 71%
Biochemistry, Genetics and Molecular Biology 1 7%
Unknown 3 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 June 2017.
All research outputs
#14,939,304
of 22,977,819 outputs
Outputs from Frontiers in Plant Science
#9,361
of 20,419 outputs
Outputs of similar age
#185,116
of 310,869 outputs
Outputs of similar age from Frontiers in Plant Science
#336
of 617 outputs
Altmetric has tracked 22,977,819 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,419 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 310,869 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 617 others from the same source and published within six weeks on either side of this one. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.