↓ Skip to main content

Identification of High-Temperature Tolerant Lentil (Lens culinaris Medik.) Genotypes through Leaf and Pollen Traits

Overview of attention for article published in Frontiers in Plant Science, May 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (74th percentile)
  • High Attention Score compared to outputs of the same age and source (89th percentile)

Mentioned by

news
1 news outlet

Readers on

mendeley
105 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Identification of High-Temperature Tolerant Lentil (Lens culinaris Medik.) Genotypes through Leaf and Pollen Traits
Published in
Frontiers in Plant Science, May 2017
DOI 10.3389/fpls.2017.00744
Pubmed ID
Authors

Kumari Sita, Akanksha Sehgal, Jitendra Kumar, Shiv Kumar, Sarvjeet Singh, Kadambot H. M. Siddique, Harsh Nayyar

Abstract

Rising temperatures are proving detrimental for various agricultural crops. Cool-season legumes such as lentil (Lens culunaris Medik.) are sensitive to even small increases in temperature during the reproductive stage, hence the need to explore the available germplasm for heat tolerance as well as its underlying mechanisms. In the present study, a set of 38 core lentil accessions were screened for heat stress tolerance by sowing 2 months later (first week of January; max/min temperature >32/20°C during the reproductive stage) than the recommended date of sowing (first week of November; max/min temperature <32/20°C during the reproductive stage). Screening revealed some promising heat-tolerant genotypes (IG2507, IG3263, IG3297, IG3312, IG3327, IG3546, IG3330, IG3745, IG4258, and FLIP2009) which can be used in a breeding program. Five heat-tolerant (HT) genotypes (IG2507, IG3263, IG3745, IG4258, and FLIP2009) and five heat-sensitive (HS) genotypes (IG2821, IG2849, IG4242, IG3973, IG3964) were selected from the screened germplasm and subjected to further analysis by growing them the following year under similar conditions to probe the mechanisms associated with heat tolerance. Comparative studies on reproductive function revealed significantly higher pollen germination, pollen viability, stigmatic function, ovular viability, pollen tube growth through the style, and pod set in HT genotypes under heat stress. Nodulation was remarkably higher (1.8-22-fold) in HT genotypes. Moreover, HT genotypes produced more sucrose in their leaves (65-73%) and anthers (35-78%) that HS genotypes, which was associated with superior reproductive function and nodulation. Exogenous supplementation of sucrose to in vitro-grown pollen grains, collected from heat-stressed plants, enhanced their germination ability. Assessment of the leaves of HT genotypes suggested significantly less damage to membranes (1.3-1.4-fold), photosynthetic function (1.14-1.17-fold) and cellular oxidizing ability (1.1-1.5-fold) than HS genotypes, which was linked to higher relative leaf water content (RLWC) and stomatal conductance (gS). Consequently, HT genotypes had less oxidative damage (measured as malondialdehyde and hydrogen peroxide concentration), coupled with a higher expression of antioxidants, especially those of the ascorbate-glutathione pathway. Controlled environment studies on contrasting genotypes further supported the impact of heat stress and differentiated the response of HT and HS genotypes to varying temperatures. Our studies indicated that temperatures >35/25°C were highly detrimental for growth and yield in lentil. While HT genotypes tolerated temperatures up to 40/30°C by producing fewer pods, the HS genotypes failed to do so even at 38/28°C. The findings attributed heat tolerance to superior pollen function and higher expression of leaf antioxidants.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 105 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Chile 1 <1%
United States 1 <1%
Unknown 103 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 22 21%
Student > Master 15 14%
Researcher 14 13%
Student > Bachelor 5 5%
Unspecified 4 4%
Other 15 14%
Unknown 30 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 53 50%
Unspecified 4 4%
Biochemistry, Genetics and Molecular Biology 4 4%
Environmental Science 2 2%
Engineering 2 2%
Other 7 7%
Unknown 33 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 June 2017.
All research outputs
#4,215,045
of 22,981,247 outputs
Outputs from Frontiers in Plant Science
#2,254
of 20,433 outputs
Outputs of similar age
#74,614
of 312,894 outputs
Outputs of similar age from Frontiers in Plant Science
#66
of 607 outputs
Altmetric has tracked 22,981,247 research outputs across all sources so far. Compared to these this one has done well and is in the 80th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 20,433 research outputs from this source. They receive a mean Attention Score of 4.0. This one has done well, scoring higher than 88% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 312,894 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.
We're also able to compare this research output to 607 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 89% of its contemporaries.