↓ Skip to main content

Comparison of Salt Tolerance in Soja Based on Metabolomics of Seedling Roots

Overview of attention for article published in Frontiers in Plant Science, June 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (51st percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
87 Dimensions

Readers on

mendeley
67 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Comparison of Salt Tolerance in Soja Based on Metabolomics of Seedling Roots
Published in
Frontiers in Plant Science, June 2017
DOI 10.3389/fpls.2017.01101
Pubmed ID
Authors

Mingxia Li, Rui Guo, Yang Jiao, Xiaofei Jin, Haiyan Zhang, Lianxuan Shi

Abstract

Soybean is an important economic crop that is continually threatened by abiotic stresses, especially salt stress. Wild soybean is an important germplasm resource for the breeding of cultivated soybean. The root system plays a very important role in plant salt tolerance. To explore the salt tolerance-related mechanisms among Soja, we have demonstrated the seedling roots' growth and metabolomics in wild soybean, semi-wild soybean, and cultivated soybean under two types of salt stress by using gas chromatography-mass spectrometry. We characterized 47 kinds of differential metabolites under neutral salt stress, and isoleucine, serine, l-allothreonine, glutamic acid, phenylalanine, asparagines, aspartic acid, pentadecanoic acid, lignoceric acid, oleic acid, galactose, tagatose, d-arabitol, dihydroxyacetone, 3-hydroxybutyric acid, and glucuronic acid increased significantly in the roots of wild soybean seedlings. However, these metabolites were suppressed in semi-wild and cultivated soybeans. Amino acid, fatty acid, sugars, and organic acid synthesis and the secondary metabolism of antioxidants increased significantly in the roots of wild soybean seedling. Under alkaline salt stress, wild soybean contained significantly higher amounts of proline, glutamic acid, aspartic acid, l-allothreonine, isoleucine, serine, alanine, arachidic acid, oleic acid, cis-gondoic acid, fumaric acid, l-malic acid, citric acid, malonic acid, gluconic acid, 5-methoxytryptamine, salicylic acid, and fluorene than semi-wild and cultivated soybeans. Our study demonstrated that carbon and nitrogen metabolism, and the tricarboxylic acid (TCA) cycle and receiver operating characteristics (especially the metabolism of phenolic substances) of the seedling roots were important to resisting salt stress and showed a regular decreasing trend from wild soybean to cultivated soybean. The metabolomics's changes were critical factors in the evolution of salt tolerance among Soja. This study provides new insights into salt tolerance in soybean, and presents quantitative parameters for a salt tolerant soybean breeding system, which is conducive to the rational use and protection of wild soybean resources.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 67 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 67 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 21%
Researcher 9 13%
Student > Doctoral Student 7 10%
Professor 5 7%
Student > Bachelor 4 6%
Other 11 16%
Unknown 17 25%
Readers by discipline Count As %
Agricultural and Biological Sciences 34 51%
Biochemistry, Genetics and Molecular Biology 10 15%
Pharmacology, Toxicology and Pharmaceutical Science 1 1%
Computer Science 1 1%
Chemistry 1 1%
Other 0 0%
Unknown 20 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 July 2017.
All research outputs
#14,072,172
of 22,988,380 outputs
Outputs from Frontiers in Plant Science
#7,359
of 20,449 outputs
Outputs of similar age
#170,026
of 316,287 outputs
Outputs of similar age from Frontiers in Plant Science
#250
of 561 outputs
Altmetric has tracked 22,988,380 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,449 research outputs from this source. They receive a mean Attention Score of 4.0. This one has gotten more attention than average, scoring higher than 60% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 316,287 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 561 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.