↓ Skip to main content

Aegilops tauschii Accessions with Geographically Diverse Origin Show Differences in Chromosome Organization and Polymorphism of Molecular Markers Linked to Leaf Rust and Powdery Mildew Resistance…

Overview of attention for article published in Frontiers in Plant Science, June 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (53rd percentile)
  • Good Attention Score compared to outputs of the same age and source (71st percentile)

Mentioned by

twitter
6 X users
facebook
1 Facebook page

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
13 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Aegilops tauschii Accessions with Geographically Diverse Origin Show Differences in Chromosome Organization and Polymorphism of Molecular Markers Linked to Leaf Rust and Powdery Mildew Resistance Genes
Published in
Frontiers in Plant Science, June 2017
DOI 10.3389/fpls.2017.01149
Pubmed ID
Authors

Maciej Majka, Michał T. Kwiatek, Joanna Majka, Halina Wiśniewska

Abstract

Aegilops tauschii (2n = 2x = 14) is a diploid wild species which is reported as a donor of the D-genome of cultivated bread wheat. The main goal of this study was to examine the differences and similarities in chromosomes organization among accessions of Ae. tauschii with geographically diversed origin, which is believed as a potential source of genes, especially determining resistance to fungal diseases (i.e., leaf rust and powdery mildew) for breeding of cereals. We established and compared the fluorescence in situ hybridization patterns of 21 accessions of Ae. tauschii using various repetitive sequences mainly from the BAC library of wheat cultivar Chinese Spring. Results obtained for Ae. tauschii chromosomes revealed many similarities between analyzed accessions, however, some hybridization patterns were specific for accessions, which become from cognate regions of the World. The most noticeable differences were observed for accessions from China which were characterized by presence of distinct signals of pTa-535 in the interstitial region of chromosome 3D, less intensity of pTa-86 signals in chromosome 2D, as well as lack of additional signals of pTa-86 in chromosomes 1D, 5D, or 6D. Ae. tauschii of Chinese origin appeared homogeneous and separate from landraces that originated in western Asia. Ae. tauschii chromosomes showed similar hybridization patterns to wheat D-genome chromosomes, but some differences were also observed among both species. What is more, we identified reciprocal translocation between short arm of chromosome 1D and long arm of chromosome 7D in accession with Iranian origin. High polymorphism between analyzed accessions and extensive allelic variation were revealed using molecular markers associated with resistance genes. Majority of the markers localized in chromosomes 1D and 2D showed the diversity of banding patterns between accessions. Obtained results imply, that there is a moderate or high level of polymorphism in the genome of Ae. tauschii determined by a geographical origin, which we proved by cytogenetic and molecular markers analysis. Therefore, selected accessions might constitute an accessible source of variation for improvement of Triticeae species like wheat and triticale.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 23%
Professor > Associate Professor 2 15%
Professor 2 15%
Unspecified 1 8%
Researcher 1 8%
Other 1 8%
Unknown 3 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 46%
Biochemistry, Genetics and Molecular Biology 1 8%
Unspecified 1 8%
Unknown 5 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 August 2018.
All research outputs
#12,750,621
of 22,985,065 outputs
Outputs from Frontiers in Plant Science
#5,092
of 20,435 outputs
Outputs of similar age
#144,899
of 315,511 outputs
Outputs of similar age from Frontiers in Plant Science
#157
of 558 outputs
Altmetric has tracked 22,985,065 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,435 research outputs from this source. They receive a mean Attention Score of 4.0. This one has gotten more attention than average, scoring higher than 74% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,511 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.
We're also able to compare this research output to 558 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.