↓ Skip to main content

Stress-Related Mitogen-Activated Protein Kinases Stimulate the Accumulation of Small Molecules and Proteins in Arabidopsis thaliana Root Exudates

Overview of attention for article published in Frontiers in Plant Science, July 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Stress-Related Mitogen-Activated Protein Kinases Stimulate the Accumulation of Small Molecules and Proteins in Arabidopsis thaliana Root Exudates
Published in
Frontiers in Plant Science, July 2017
DOI 10.3389/fpls.2017.01292
Pubmed ID
Authors

Nadine Strehmel, Wolfgang Hoehenwarter, Susann Mönchgesang, Petra Majovsky, Sylvia Krüger, Dierk Scheel, Justin Lee

Abstract

A delicate balance in cellular signaling is required for plants to respond to microorganisms or to changes in their environment. Mitogen-activated protein kinase (MAPK) cascades are one of the signaling modules that mediate transduction of extracellular microbial signals into appropriate cellular responses. Here, we employ a transgenic system that simulates activation of two pathogen/stress-responsive MAPKs to study release of metabolites and proteins into root exudates. The premise is based on our previous proteomics study that suggests upregulation of secretory processes in this transgenic system. An advantage of this experimental set-up is the direct focus on MAPK-regulated processes without the confounding complications of other signaling pathways activated by exposure to microbes or microbial molecules. Using non-targeted metabolomics and proteomics studies, we show that MAPK activation can indeed drive the appearance of dipeptides, defense-related metabolites and proteins in root apoplastic fluid. However, the relative levels of other compounds in the exudates were decreased. This points to a bidirectional control of metabolite and protein release into the apoplast. The putative roles for some of the identified apoplastic metabolites and proteins are discussed with respect to possible antimicrobial/defense or allelopathic properties. Overall, our findings demonstrate that sustained activation of MAPKs alters the composition of apoplastic root metabolites and proteins, presumably to influence the plant-microbe interactions in the rhizosphere. The reported metabolomics and proteomics data are available via Metabolights (Identifier: MTBLS441) and ProteomeXchange (Identifier: PXD006328), respectively.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 16%
Researcher 5 16%
Student > Bachelor 3 9%
Professor > Associate Professor 3 9%
Student > Master 3 9%
Other 4 13%
Unknown 9 28%
Readers by discipline Count As %
Agricultural and Biological Sciences 15 47%
Biochemistry, Genetics and Molecular Biology 5 16%
Environmental Science 1 3%
Psychology 1 3%
Engineering 1 3%
Other 0 0%
Unknown 9 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 August 2017.
All research outputs
#14,356,760
of 22,990,068 outputs
Outputs from Frontiers in Plant Science
#8,236
of 20,454 outputs
Outputs of similar age
#175,335
of 314,579 outputs
Outputs of similar age from Frontiers in Plant Science
#260
of 526 outputs
Altmetric has tracked 22,990,068 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,454 research outputs from this source. They receive a mean Attention Score of 4.0. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 314,579 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 526 others from the same source and published within six weeks on either side of this one. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.