↓ Skip to main content

Transcriptional Regulation of Brassinosteroid Accumulation during Carrot Development and the Potential Role of Brassinosteroids in Petiole Elongation

Overview of attention for article published in Frontiers in Plant Science, August 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Transcriptional Regulation of Brassinosteroid Accumulation during Carrot Development and the Potential Role of Brassinosteroids in Petiole Elongation
Published in
Frontiers in Plant Science, August 2017
DOI 10.3389/fpls.2017.01356
Pubmed ID
Authors

Feng Que, Guang-Long Wang, Zhi-Sheng Xu, Feng Wang, Ai-Sheng Xiong

Abstract

It is widely known that brassinosteroids (BRs) are involved in various physiological processes during plant growth and development. Roles of BRs have been reported in many plants. However, relevant report is yet not found in carrot. Carrot is a nutrient-rich vegetable from the Apiaceae family. Here, we measured the bioactive contents of BRs at five successive stages and analyzed the expression profiles of genes involved in BR biosynthesis, signaling pathway and catabolism. We found that most biosynthesis regulated genes had higher expression level at the first development stage of carrot and the catabolism gene BAS1/CYP734A1 had significantly high expression level at the first stage in carrot roots and petioles. In addition, we treated carrot plants with exogenous 24-epibrassinolide (24-EBL) and examined the morphological changes after treating. Compared with control plants, carrot plants treated with 24-EBL had higher plant height, more number of petioles and heavier aboveground weight. The expression levels of DcBRI1, DcBZR1, and DcBSU1 in the petioles were significantly up-regulated by treating with exogenous 24-EBL. The expression profiles of DcCYP734A1 were all significantly up-regulated in the three organs when treated with 0.5 mg/L 24-EBL. The elongation of carrot petioles can be promoted by treating with exogenous 24-EBL. These results indicate that BRs playing potential roles during the growth and development of carrot.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 30 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 17%
Student > Bachelor 3 10%
Researcher 3 10%
Student > Doctoral Student 1 3%
Lecturer 1 3%
Other 4 13%
Unknown 13 43%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 37%
Biochemistry, Genetics and Molecular Biology 2 7%
Chemistry 2 7%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Materials Science 1 3%
Other 0 0%
Unknown 13 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 September 2017.
All research outputs
#14,362,315
of 22,999,744 outputs
Outputs from Frontiers in Plant Science
#8,248
of 20,492 outputs
Outputs of similar age
#176,949
of 318,509 outputs
Outputs of similar age from Frontiers in Plant Science
#242
of 494 outputs
Altmetric has tracked 22,999,744 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,492 research outputs from this source. They receive a mean Attention Score of 4.0. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 318,509 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 494 others from the same source and published within six weeks on either side of this one. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.