↓ Skip to main content

Nitrate Uptake Affects Cell Wall Synthesis and Modeling

Overview of attention for article published in Frontiers in Plant Science, August 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
64 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Nitrate Uptake Affects Cell Wall Synthesis and Modeling
Published in
Frontiers in Plant Science, August 2017
DOI 10.3389/fpls.2017.01376
Pubmed ID
Authors

Simone Landi, Sergio Esposito

Abstract

Nowadays, the relationship(s) about N assimilation and cell wall remodeling in plants remains generally unclear. Enzymes involved in cell wall synthesis/modification, and nitrogen transporters play a critical role in plant growth, differentiation, and response to external stimuli. In this review, a co-expression analysis of nitrate and ammonium transporters of Arabidopsis thaliana was performed in order to explore the functional connection of these proteins with cell-wall related enzymes. This approach highlighted a strict relationship between inorganic nitrogen transporters and cell wall formation, identifying a number of co-expressed remodeling enzymes. The enzymes involved in pectin and xyloglucan synthesis resulted particularly co-regulated together with nitrate carriers, suggesting a connection between nitrate assimilation and cell wall growth regulation. Major Facilitator Carriers, and one chloride channel, are similarly co-expressed with pectin lyase, pectinacetylesterase, and cellulose synthase. Contrarily, ammonium transporters show little or no connection with those genes involved in cell wall synthesis. Different aspects related to plant development, embryogenesis, and abiotic stress response will be discussed, given the importance in plant growth of cell wall synthesis and nitrate uptake. Intriguingly, the improvement of abiotic stress tolerance in crops concerns both these processes indicating the importance in sensing the environmental constraints and mediating a response. These evaluations could help to identify candidate genes for breeding purposes.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 64 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 64 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 22%
Researcher 13 20%
Student > Master 6 9%
Student > Doctoral Student 4 6%
Student > Postgraduate 4 6%
Other 6 9%
Unknown 17 27%
Readers by discipline Count As %
Agricultural and Biological Sciences 28 44%
Biochemistry, Genetics and Molecular Biology 10 16%
Business, Management and Accounting 1 2%
Chemical Engineering 1 2%
Social Sciences 1 2%
Other 1 2%
Unknown 22 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 September 2017.
All research outputs
#18,571,001
of 23,001,641 outputs
Outputs from Frontiers in Plant Science
#13,962
of 20,497 outputs
Outputs of similar age
#243,440
of 317,831 outputs
Outputs of similar age from Frontiers in Plant Science
#378
of 494 outputs
Altmetric has tracked 23,001,641 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,497 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 317,831 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 494 others from the same source and published within six weeks on either side of this one. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.