↓ Skip to main content

Functional Disruption of a Chloroplast Pseudouridine Synthase Desensitizes Arabidopsis Plants to Phosphate Starvation

Overview of attention for article published in Frontiers in Plant Science, August 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Functional Disruption of a Chloroplast Pseudouridine Synthase Desensitizes Arabidopsis Plants to Phosphate Starvation
Published in
Frontiers in Plant Science, August 2017
DOI 10.3389/fpls.2017.01421
Pubmed ID
Authors

Shan Lu, Chenyi Li, Ye Zhang, Zai Zheng, Dong Liu

Abstract

Phosphate (Pi) deficiency is a common nutritional stress of plants in both agricultural and natural ecosystems. Plants respond to Pi starvation in the environment by triggering a suite of biochemical, physiological, and developmental changes that increase survival and growth. The key factors that determine plant sensitivity to Pi starvation, however, are unclear. In this research, we identified an Arabidopsis mutant, dps1, with greatly reduced sensitivity to Pi starvation. The dps1 phenotypes are caused by a mutation in the previously characterized SVR1 (SUPPRESSION OF VARIAGATION 1) gene, which encodes a chloroplast-localized pseudouridine synthase. The mutation of SVR1 results in defects in chloroplast rRNA biogenesis, which subsequently reduces chloroplast translation. Another mutant, rps5, which contains a mutation in the chloroplast ribosomal protein RPS5 and has reduced chloroplast translation, also displayed decreased sensitivity to Pi starvation. Furthermore, wild type plants treated with lincomycin, a chemical inhibitor of chloroplast translation, showed similar growth phenotypes and Pi starvation responses as dps1 and rps5. These results suggest that impaired chloroplast translation desensitizes plants to Pi starvation. Combined with previously published results showing that enhanced leaf photosynthesis augments plant responses to Pi starvation, we propose that the decrease in responses to Pi starvation in dps1, rps5, and lincomycin-treated plants is due to their reduced demand for Pi input from the environment.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 17%
Student > Ph. D. Student 2 11%
Student > Master 2 11%
Student > Bachelor 1 6%
Professor > Associate Professor 1 6%
Other 1 6%
Unknown 8 44%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 28%
Agricultural and Biological Sciences 3 17%
Engineering 2 11%
Unknown 8 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 September 2017.
All research outputs
#14,951,544
of 22,997,544 outputs
Outputs from Frontiers in Plant Science
#9,384
of 20,481 outputs
Outputs of similar age
#187,665
of 316,580 outputs
Outputs of similar age from Frontiers in Plant Science
#264
of 496 outputs
Altmetric has tracked 22,997,544 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,481 research outputs from this source. They receive a mean Attention Score of 3.9. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 316,580 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 496 others from the same source and published within six weeks on either side of this one. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.