↓ Skip to main content

Genome-Wide Identification and Expression Analysis of NRAMP Family Genes in Soybean (Glycine Max L.)

Overview of attention for article published in Frontiers in Plant Science, August 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
67 Dimensions

Readers on

mendeley
51 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genome-Wide Identification and Expression Analysis of NRAMP Family Genes in Soybean (Glycine Max L.)
Published in
Frontiers in Plant Science, August 2017
DOI 10.3389/fpls.2017.01436
Pubmed ID
Authors

Lu Qin, Peipei Han, Liyu Chen, Thomas C. Walk, Yinshui Li, Xiaojia Hu, Lihua Xie, Hong Liao, Xing Liao

Abstract

The NRAMP (natural resistance-associated macrophage protein) family of genes has been widely characterized in organisms ranging from bacteria to yeast, plants, mice, and humans. This gene family plays vital roles in divalent metal ion transport across cellular membranes. As yet, comprehensive analysis of NRAMP family genes has not been reported for soybean. In this study, bioinformatics analysis was conducted to identify 13 soybean NRAMP genes, along with their gene structures, phylogenetic relationships, and transmembrane domains. Expression analysis suggests that GmNRAMP genes function in numerous tissues and development stages. Moreover, soybean NRAMP genes were differentially regulated by deficiencies of N, P, K, Fe, and S, along with toxicities of Fe, Cu, Cd, and Mn. These results indicate that GmNRAMP genes function in many nutrient stress pathways, and might be involved in crosstalk among nutrient stress pathways. Subcellular localization analysis in Arabidopsis protoplasts confirmed the tonoplast or plasma membrane localization of selected soybean NRMAP proteins. Protein-protein interaction analysis found that the networks of three GmNRAMP proteins which putatively interact with nodulin-like proteins, almost distinct from the network that is common to the other 10 soybean NRAMP proteins. Subsequent qRT-PCR results confirmed that these three GmNRMAP genes exhibited enhanced expression in soybean nodules, suggesting potential functions in the transport of Fe or other metal ions in soybean nodules. Overall, the systematic analysis of the GmNRAMP gene family reported herein provides valuable information for further studies on the biological roles of GmNRAMPs in divalent metal ion transport in various soybean tissues under numerous nutrient stresses and soybean-rhizobia symbiosis.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 51 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 51 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 16%
Student > Ph. D. Student 8 16%
Student > Bachelor 7 14%
Student > Doctoral Student 5 10%
Student > Master 3 6%
Other 5 10%
Unknown 15 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 22 43%
Biochemistry, Genetics and Molecular Biology 11 22%
Computer Science 1 2%
Social Sciences 1 2%
Chemistry 1 2%
Other 0 0%
Unknown 15 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 September 2017.
All research outputs
#15,478,452
of 23,001,641 outputs
Outputs from Frontiers in Plant Science
#10,989
of 20,492 outputs
Outputs of similar age
#200,101
of 318,831 outputs
Outputs of similar age from Frontiers in Plant Science
#298
of 496 outputs
Altmetric has tracked 23,001,641 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,492 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 318,831 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 496 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.