↓ Skip to main content

Histological and Transcriptomic Analysis during Bulbil Formation in Lilium lancifolium

Overview of attention for article published in Frontiers in Plant Science, August 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
40 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Histological and Transcriptomic Analysis during Bulbil Formation in Lilium lancifolium
Published in
Frontiers in Plant Science, August 2017
DOI 10.3389/fpls.2017.01508
Pubmed ID
Authors

Panpan Yang, Leifeng Xu, Hua Xu, Yuchao Tang, Guoren He, Yuwei Cao, Yayan Feng, Suxia Yuan, Jun Ming

Abstract

Aerial bulbils are an important propagative organ, playing an important role in population expansion. However, the detailed gene regulatory patterns and molecular mechanism underlying bulbil formation remain unclear. Triploid Lilium lancifolium, which develops many aerial bulbils on the leaf axils of middle-upper stem, is a useful species for investigating bulbil formation. To investigate the mechanism of bulbil formation in triploid L. lancifolium, we performed histological and transcriptomic analyses using samples of leaf axils located in the upper and lower stem of triploid L. lancifolium during bulbil formation. Histological results indicated that the bulbils of triploid L. lancifolium are derived from axillary meristems that initiate de novo from cells on the adaxial side of the petiole base. Transcriptomic analysis generated ~650 million high-quality reads and 11,871 differentially expressed genes (DEGs). Functional analysis showed that the DEGs were significantly enriched in starch and sucrose metabolism and plant hormone signal transduction. Starch synthesis and accumulation likely promoted the initiation of upper bulbils in triploid L. lancifolium. Hormone-associated pathways exhibited distinct patterns of change in each sample. Auxin likely promoted the initiation of bulbils and then inhibited further bulbil formation. High biosynthesis and low degradation of cytokinin might have led to bulbil formation in the upper leaf axil. The present study achieved a global transcriptomic analysis focused on gene expression changes and pathways' enrichment during upper bulbil formation in triploid L. lancifolium, laying a solid foundation for future molecular studies on bulbil formation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 14%
Researcher 3 14%
Student > Master 3 14%
Other 1 5%
Professor > Associate Professor 1 5%
Other 1 5%
Unknown 9 43%
Readers by discipline Count As %
Agricultural and Biological Sciences 9 43%
Biochemistry, Genetics and Molecular Biology 2 10%
Unknown 10 48%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 October 2017.
All research outputs
#15,479,632
of 23,002,898 outputs
Outputs from Frontiers in Plant Science
#10,992
of 20,497 outputs
Outputs of similar age
#197,999
of 315,734 outputs
Outputs of similar age from Frontiers in Plant Science
#284
of 485 outputs
Altmetric has tracked 23,002,898 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,497 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,734 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 485 others from the same source and published within six weeks on either side of this one. This one is in the 34th percentile – i.e., 34% of its contemporaries scored the same or lower than it.