↓ Skip to main content

RECoN: Rice Environment Coexpression Network for Systems Level Analysis of Abiotic-Stress Response

Overview of attention for article published in Frontiers in Plant Science, September 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (63rd percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
RECoN: Rice Environment Coexpression Network for Systems Level Analysis of Abiotic-Stress Response
Published in
Frontiers in Plant Science, September 2017
DOI 10.3389/fpls.2017.01640
Pubmed ID
Authors

Arjun Krishnan, Chirag Gupta, Madana M. R. Ambavaram, Andy Pereira

Abstract

Transcriptional profiling is a prevalent and powerful approach for capturing the response of crop plants to environmental stresses, e.g., response of rice to drought. However, functionally interpreting the resulting genome-wide gene expression changes is severely hampered by the large gaps in our genomic knowledge about which genes work together in cellular pathways/processes in rice. Here, we present a new web resource - RECoN - that relies on a network-based approach to go beyond currently limited annotations in delineating functional and regulatory perturbations in new rice transcriptome datasets generated by a researcher. To build RECoN, we first enumerated 1,744 abiotic stress-specific gene modules covering 28,421 rice genes (>72% of the genes in the genome). Each module contains a group of genes tightly coexpressed across a large number of environmental conditions and, thus, is likely to be functionally coherent. When a user provides a new differential expression profile, RECoN identifies modules substantially perturbed in their experiment and further suggests deregulated functional and regulatory mechanisms based on the enrichment of current annotations within the predefined modules. We demonstrate the utility of this resource by analyzing new drought transcriptomes of rice in three developmental stages, which revealed large-scale insights into the cellular processes and regulatory mechanisms involved in common and stage-specific drought responses. RECoN enables biologists to functionally explore new data from all abiotic stresses on a genome-scale and to uncover gene candidates, including those that are currently functionally uncharacterized, for engineering stress tolerance.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 16%
Student > Ph. D. Student 3 9%
Student > Bachelor 2 6%
Professor 2 6%
Professor > Associate Professor 2 6%
Other 7 22%
Unknown 11 34%
Readers by discipline Count As %
Agricultural and Biological Sciences 11 34%
Computer Science 3 9%
Engineering 3 9%
Social Sciences 1 3%
Environmental Science 1 3%
Other 0 0%
Unknown 13 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 January 2018.
All research outputs
#13,334,970
of 23,002,898 outputs
Outputs from Frontiers in Plant Science
#6,102
of 20,501 outputs
Outputs of similar age
#155,957
of 318,397 outputs
Outputs of similar age from Frontiers in Plant Science
#162
of 477 outputs
Altmetric has tracked 23,002,898 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,501 research outputs from this source. They receive a mean Attention Score of 4.0. This one has gotten more attention than average, scoring higher than 68% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 318,397 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.
We're also able to compare this research output to 477 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.