↓ Skip to main content

Genetic Loci Governing Grain Yield and Root Development under Variable Rice Cultivation Conditions

Overview of attention for article published in Frontiers in Plant Science, October 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
77 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genetic Loci Governing Grain Yield and Root Development under Variable Rice Cultivation Conditions
Published in
Frontiers in Plant Science, October 2017
DOI 10.3389/fpls.2017.01763
Pubmed ID
Authors

Margaret Catolos, Nitika Sandhu, Shalabh Dixit, Noraziya A. A. Shamsudin, Ma E. B. Naredo, Kenneth L. McNally, Amelia Henry, Ma G. Diaz, Arvind Kumar

Abstract

Drought is the major abiotic stress to rice grain yield under unpredictable changing climatic scenarios. The widely grown, high yielding but drought susceptible rice varieties need to be improved by unraveling the genomic regions controlling traits enhancing drought tolerance. The present study was conducted with the aim to identify quantitative trait loci (QTLs) for grain yield and root development traits under irrigated non-stress and reproductive-stage drought stress in both lowland and upland situations. A mapping population consisting of 480 lines derived from a cross between Dular (drought-tolerant) and IR64-21 (drought susceptible) was used. QTL analysis revealed three major consistent-effect QTLs for grain yield (qDTY1.1, qDTY1.3 , and qDTY8.1 ) under non-stress and reproductive-stage drought stress conditions, and 2 QTLs for root traits (qRT9.1 for root-growth angle and qRT5.1 for multiple root traits, i.e., seedling-stage root length, root dry weight and crown root number). The genetic locus qDTY1.1 was identified as hotspot for grain yield and yield-related agronomic and root traits. The study identified significant positive correlations among numbers of crown roots and mesocotyl length at the seedling stage and root length and root dry weight at depth at later stages with grain yield and yield-related traits. Under reproductive stage drought stress, the grain yield advantage of the lines with QTLs ranged from 24.1 to 108.9% under upland and 3.0-22.7% under lowland conditions over the lines without QTLs. The lines with QTL combinations qDTY1.3 +qDTY8.1 showed the highest mean grain yield advantage followed by lines having qDTY1.1 +qDTY8.1 and qDTY1.1 +qDTY8.1 +qDTY1.3 , across upland/lowland reproductive-stage drought stress. The identified QTLs for root traits, mesocotyl length, grain yield and yield-related traits can be immediately deployed in marker-assisted breeding to develop drought tolerant high yielding rice varieties.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 77 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 77 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 25 32%
Researcher 11 14%
Student > Bachelor 7 9%
Professor 5 6%
Student > Postgraduate 4 5%
Other 12 16%
Unknown 13 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 42 55%
Biochemistry, Genetics and Molecular Biology 9 12%
Social Sciences 2 3%
Environmental Science 1 1%
Nursing and Health Professions 1 1%
Other 4 5%
Unknown 18 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 November 2017.
All research outputs
#17,920,654
of 23,008,860 outputs
Outputs from Frontiers in Plant Science
#12,216
of 20,507 outputs
Outputs of similar age
#233,177
of 325,922 outputs
Outputs of similar age from Frontiers in Plant Science
#306
of 489 outputs
Altmetric has tracked 23,008,860 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,507 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 325,922 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 489 others from the same source and published within six weeks on either side of this one. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.