↓ Skip to main content

The Rice High-Affinity K+ Transporter OsHKT2;4 Mediates Mg2+ Homeostasis under High-Mg2+ Conditions in Transgenic Arabidopsis

Overview of attention for article published in Frontiers in Plant Science, October 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Rice High-Affinity K+ Transporter OsHKT2;4 Mediates Mg2+ Homeostasis under High-Mg2+ Conditions in Transgenic Arabidopsis
Published in
Frontiers in Plant Science, October 2017
DOI 10.3389/fpls.2017.01823
Pubmed ID
Authors

Chi Zhang, Hejuan Li, Jiayuan Wang, Bin Zhang, Wei Wang, Hongxuan Lin, Sheng Luan, Jiping Gao, Wenzhi Lan

Abstract

Rice (Oryza sativa; background Nipponbare) contains nine HKT (high-affinity K(+) transport)-like genes encoding membrane proteins belonging to the superfamily of Ktr/TRK/HKT. OsHKTs have been proposed to include four selectivity filter-pore-forming domains homologous to the bacterial K(+) channel KcsA, and are separated into OsHKT1s with Na(+)-selective activity and OsHKT2s with Na(+)-K(+) symport activity. As a member of the OsHKT2 subfamily, OsHKT2;4 renders Mg(2+) and Ca(2+) permeability for yeast cells and Xenopus laevis oocytes, besides K(+) and Na(+). However, physiological functions related to Mg(2+)in planta have not yet been identified. Here we report that OsHKT2;4 from rice (O. sativa; background Nipponbare) functions as a low-affinity Mg(2+) transporter to mediate Mg(2+) homeostasis in plants under high-Mg(2+) environments. Using the functional complementation assay in Mg(2+)-uptake deficient Salmonella typhimurium strains MM281 and electrophysiological analysis in X. laevis oocytes, we found that OsHKT2;4 could rescue the growth of MM281 in Mg(2+)-deficient conditions and induced the Mg(2+) currents in oocytes at millimolar range of Mg(2+). Additionally, overexpression of OsHKT2;4 to Arabidopsis mutant lines with a knockout of AtMGT6, a gene encoding the transporter protein necessary for Mg(2+) adaptation in Arabidopsis, caused the Mg(2+) toxicity to the leaves under the high-Mg(2+) stress, but not under low-Mg(2+) environments. Moreover, this Mg(2+) toxicity symptom resulted from the excessive Mg(2+) translocation from roots to shoots, and was relieved by the increase in supplemental Ca(2+). Together, our results demonstrated that OsHKT2;4 is a low-affinity Mg(2+) transporter responsible for Mg(2+) transport to aerials in plants under high-Mg(2+) conditions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 21%
Professor 2 14%
Researcher 2 14%
Student > Master 1 7%
Student > Bachelor 1 7%
Other 0 0%
Unknown 5 36%
Readers by discipline Count As %
Agricultural and Biological Sciences 4 29%
Biochemistry, Genetics and Molecular Biology 3 21%
Unknown 7 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 December 2017.
All research outputs
#17,920,654
of 23,008,860 outputs
Outputs from Frontiers in Plant Science
#12,216
of 20,507 outputs
Outputs of similar age
#234,501
of 327,740 outputs
Outputs of similar age from Frontiers in Plant Science
#296
of 482 outputs
Altmetric has tracked 23,008,860 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,507 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,740 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 482 others from the same source and published within six weeks on either side of this one. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.