↓ Skip to main content

Accumulation Profiles of Embryonic Salt-Soluble Proteins in Maize Hybrids and Parental Lines Indicate Matroclinous Inheritance: A Proteomic Analysis

Overview of attention for article published in Frontiers in Plant Science, October 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
17 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Accumulation Profiles of Embryonic Salt-Soluble Proteins in Maize Hybrids and Parental Lines Indicate Matroclinous Inheritance: A Proteomic Analysis
Published in
Frontiers in Plant Science, October 2017
DOI 10.3389/fpls.2017.01824
Pubmed ID
Authors

Fen Ning, Xiaolin Wu, Hang Zhang, Zhaokun Wu, Liangjie Niu, Hao Yang, Wei Wang

Abstract

Maize is one of the most widely cultivated crops. It accumulates a large quantity of seed storage proteins, which are important for seed development and germination, and contribute to the nutritional quality of seeds. Based on solubility, the storage proteins are divided into albumins (water-soluble), globulins (salt-soluble), prolamins (alcohol-soluble), and glutelins (acid- or alkali-soluble). Maize hybrids are cultivated due to the superior performance of F1 hybrids than that of their parents, a phenomenon known as heterosis. However, the accumulation patterns of seed storage proteins in maize embryos between the hybrids and their parental inbred lines have not been compared. In the present study, two elite inbred lines of China, Zheng 58 and Chang 7-2, and their reciprocal hybrids (Zheng 58 × Chang 7-2 and Chang 7-2 × Zheng 58) were used to explore parental influences on the accumulation patterns of seed storage proteins in maize embryos. For this purpose, we focused on seed salt-soluble proteins (SSPs) in our experiments. The SSPs were selectively extracted from maize mature embryos after extensive removal of water-soluble albumin and separated using two-dimensional gel electrophoresis (2-DE), followed by mass spectrometry analysis. Our results indicated that the 2-DE SSP profiles of hybrids closely resembled those of their maternal parent rather than the paternal parent. In other words, 2-DE SSP profiles of Zheng 58 × Chang 7-2 were more similar those of Zheng 58 whereas such profiles of Chang 7-2 × Zheng 58 were more similar to those of Chang 7-2 although the 2-DE profiles of all four maize types were quite similar. In total, 12 relatively abundant SSPs spots representing five kinds of proteins were identified, of which nine protein spots displayed non-additive accumulation in at least one hybrid. This study provided additional data on dominance and partial dominance effects on maize hybrids embryos. Besides, earlier studies on accumulation profiles of globulin-1 (also known as vicilin), which is one of the most abundant globulins in maize embryos, also support the above results. This study would be helpful in revealing the mechanisms underlying SSPs accumulation patterns in the hybrids.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 29%
Student > Master 2 12%
Student > Bachelor 2 12%
Unspecified 1 6%
Professor 1 6%
Other 1 6%
Unknown 5 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 4 24%
Biochemistry, Genetics and Molecular Biology 2 12%
Engineering 2 12%
Computer Science 1 6%
Unspecified 1 6%
Other 2 12%
Unknown 5 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 November 2017.
All research outputs
#18,576,001
of 23,007,887 outputs
Outputs from Frontiers in Plant Science
#13,975
of 20,507 outputs
Outputs of similar age
#251,119
of 327,873 outputs
Outputs of similar age from Frontiers in Plant Science
#333
of 482 outputs
Altmetric has tracked 23,007,887 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,507 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,873 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 482 others from the same source and published within six weeks on either side of this one. This one is in the 17th percentile – i.e., 17% of its contemporaries scored the same or lower than it.