↓ Skip to main content

Can Aquatic Plants Keep Pace with Climate Change?

Overview of attention for article published in Frontiers in Plant Science, November 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (78th percentile)
  • High Attention Score compared to outputs of the same age and source (89th percentile)

Mentioned by

twitter
15 X users

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
48 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Can Aquatic Plants Keep Pace with Climate Change?
Published in
Frontiers in Plant Science, November 2017
DOI 10.3389/fpls.2017.01906
Pubmed ID
Authors

Duarte S Viana

Abstract

The persistence of species may depend upon their capacity to keep pace with climate change. However, dispersal has been ignored in the vast majority of studies that aimed at estimating and predicting range shifts as a response to climate change. Long distance dispersal (LDD) in particular might promote rapid range shifts and allow species to track suitable habitat. Many aquatic plant species are dispersed by birds and have the potential to be dispersed over hundreds of kilometers during the bird migration seasons. I argue that such dispersal potential might be critical to allow species to track climate change happening at unprecedented high rates. As a case study, I used dispersal data from three aquatic plant species dispersed by migratory birds to model range shifts in response to climate change projections. By comparing four dispersal scenarios - (1) no dispersal, (2) unlimited dispersal, (3) LDD < 100 km, and (4) LDD mediated by bird migratory movements -, it was shown that, for bird-mediated dispersal, the rate of colonization is sufficient to counterbalance the rate of habitat loss. The estimated rates of colonization (3.2-31.5 km⋅year-1) are higher than, for example, the rate of global warming (previously estimated at 0.42 km⋅year-1). Although further studies are needed, the results suggest that these aquatic plant species can adjust their ranges under a severe climate change scenario. Therefore, investigating the dispersal capacity of species, namely their LDD potential, may contribute to estimate the likelihood of species to keep pace with climate change.

X Demographics

X Demographics

The data shown below were collected from the profiles of 15 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 48 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 48 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 11 23%
Researcher 11 23%
Student > Ph. D. Student 9 19%
Student > Bachelor 4 8%
Other 3 6%
Other 5 10%
Unknown 5 10%
Readers by discipline Count As %
Agricultural and Biological Sciences 22 46%
Environmental Science 16 33%
Biochemistry, Genetics and Molecular Biology 1 2%
Nursing and Health Professions 1 2%
Social Sciences 1 2%
Other 0 0%
Unknown 7 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 May 2022.
All research outputs
#3,765,677
of 23,007,887 outputs
Outputs from Frontiers in Plant Science
#1,920
of 20,507 outputs
Outputs of similar age
#69,670
of 329,030 outputs
Outputs of similar age from Frontiers in Plant Science
#51
of 486 outputs
Altmetric has tracked 23,007,887 research outputs across all sources so far. Compared to these this one has done well and is in the 83rd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 20,507 research outputs from this source. They receive a mean Attention Score of 4.0. This one has done particularly well, scoring higher than 90% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,030 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 78% of its contemporaries.
We're also able to compare this research output to 486 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 89% of its contemporaries.