↓ Skip to main content

Plasticity in Meristem Allocation as an Adaptive Strategy of a Desert Shrub under Contrasting Environments

Overview of attention for article published in Frontiers in Plant Science, November 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
20 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Plasticity in Meristem Allocation as an Adaptive Strategy of a Desert Shrub under Contrasting Environments
Published in
Frontiers in Plant Science, November 2017
DOI 10.3389/fpls.2017.01933
Pubmed ID
Authors

Weiwei She, Yuxuan Bai, Yuqing Zhang, Shugao Qin, Zhen Liu, Bin Wu

Abstract

The pattern of resource allocation to reproduction vs. vegetative growth is a core component of a plant's life-history strategy. Plants can modify their biomass allocation patterns to adapt to contrasting environments. Meristems can have alternative fates to commit to vegetative growth, reproduction, or remaining inactive (dormant or senescent/dead). However, knowledge about whether meristem fates can interpret adaptive changes in biomass allocation remains largely unknown. We measured aboveground plant biomass (a proxy of plant size) and meristem number of a dominant shrub Artemisia ordosica in three populations occupying different habitats in the Mu Us Desert of northern China. Size-dependent biomass allocation and meristem allocation among habitats were compared. The size-dependent biomass allocation and meristem allocation of A. ordosica strongly varied across habitats. There were significant positive linear relationships between meristem allocation and biomass allocation in all habitats, indicating that meristem allocation is an indicator of the estimated resource allocation to reproductive and vegetative organs in this species. Plasticity in meristem allocation was more likely caused by larger individuals having less active meristems due to environmental stress. Vegetative meristems (VM) were likely more vulnerable to environmental limitation than reproductive ones, resulting in the ratio of resource investment between vegetative and reproductive functions exhibiting plasticity in different habitats. A. ordosica invested a higher fraction of its resource to reproduction in the adverse habitat, while more resource to vegetative growth in the favorable habitat. A. ordosica adopts different resource allocation patterns to adapt to contrasting habitat conditions through altering its meristem fates. Our results suggest that the arid-adapted shrub A. ordosica deactivates more VM than reproductive ones to hedge against environmental stress, representing an important adaptive strategy. This information contributes to understand the life-history strategies of long-lived plants under stressful environments.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 20 100%

Demographic breakdown

Readers by professional status Count As %
Other 2 10%
Researcher 2 10%
Student > Master 2 10%
Professor 1 5%
Lecturer 1 5%
Other 2 10%
Unknown 10 50%
Readers by discipline Count As %
Agricultural and Biological Sciences 4 20%
Environmental Science 2 10%
Biochemistry, Genetics and Molecular Biology 1 5%
Pharmacology, Toxicology and Pharmaceutical Science 1 5%
Unknown 12 60%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 November 2017.
All research outputs
#18,576,855
of 23,008,860 outputs
Outputs from Frontiers in Plant Science
#13,975
of 20,507 outputs
Outputs of similar age
#253,770
of 331,175 outputs
Outputs of similar age from Frontiers in Plant Science
#353
of 485 outputs
Altmetric has tracked 23,008,860 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,507 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,175 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 485 others from the same source and published within six weeks on either side of this one. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.