↓ Skip to main content

Overexpression of ERF1-V from Haynaldia villosa Can Enhance the Resistance of Wheat to Powdery Mildew and Increase the Tolerance to Salt and Drought Stresses

Overview of attention for article published in Frontiers in Plant Science, November 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Overexpression of ERF1-V from Haynaldia villosa Can Enhance the Resistance of Wheat to Powdery Mildew and Increase the Tolerance to Salt and Drought Stresses
Published in
Frontiers in Plant Science, November 2017
DOI 10.3389/fpls.2017.01948
Pubmed ID
Authors

Liping Xing, Zhaocan Di, Wenwu Yang, Jiaqian Liu, Meina Li, Xiaojuan Wang, Chaofan Cui, Xiaoyun Wang, Xiue Wang, Ruiqi Zhang, Jin Xiao, Aizhong Cao

Abstract

The APETALA 2/Ethylene-responsive element binding factor (AP2/ERF) transcription factor gene family is widely involved in the biotic and abiotic stress regulation. Haynaldia villosa (VV, 2n = 14), a wild species of wheat, is a potential gene pool for wheat improvement. H. villosa confers high resistance to several wheat diseases and high tolerance to some abiotic stress. In this study, ERF1-V, an ethylene-responsive element-binding factor gene of the AP2/ERF transcription factor gene family from wild H. villosa, was cloned and characterized. Sequence and phylogenetic analysis showed that ERF1-V is a deduced B2 type ERF gene. ERF1-V was first identified as a Blumeria graminis f. sp. tritici (Bgt) up-regulated gene, and later found to be induced by drought, salt and cold stresses. In responses to hormones, ERF1-V was up-regulated by ethylene and abscisic acid, but down-regulated by salicylic acid and jasmonic acid. Over expression of ERF1-V in wheat could improve resistance to powdery mildew, salt and drought stress. Chlorophyll content, malondialdehyde content, superoxide dismutase and peroxidase activity were significantly differences between the recipient Yangmai158 and the transgenic plants following salt treatment. Furthermore, the expression levels of some stress responsive genes were differences after drought or salt treatments. Although ERF1-V was activated by the constitutive promoter, the agronomic traits, including flowering time, plant height, effective tiller number, spikelet number per spike and grain size, did not changed significantly. ERF1-V is a valuable gene for wheat improvement by genetic engineering.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 19%
Researcher 4 15%
Student > Bachelor 3 12%
Professor 2 8%
Student > Postgraduate 2 8%
Other 3 12%
Unknown 7 27%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 46%
Biochemistry, Genetics and Molecular Biology 6 23%
Medicine and Dentistry 1 4%
Design 1 4%
Unknown 6 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 December 2017.
All research outputs
#18,578,649
of 23,011,300 outputs
Outputs from Frontiers in Plant Science
#13,977
of 20,511 outputs
Outputs of similar age
#326,142
of 438,556 outputs
Outputs of similar age from Frontiers in Plant Science
#318
of 436 outputs
Altmetric has tracked 23,011,300 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,511 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 438,556 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 436 others from the same source and published within six weeks on either side of this one. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.