↓ Skip to main content

Transcriptomic Response of Resistant (PI613981–Malus sieversii) and Susceptible (“Royal Gala”) Genotypes of Apple to Blue Mold (Penicillium expansum) Infection

Overview of attention for article published in Frontiers in Plant Science, November 2017
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (71st percentile)
  • High Attention Score compared to outputs of the same age and source (80th percentile)

Mentioned by

twitter
3 X users
wikipedia
1 Wikipedia page

Citations

dimensions_citation
41 Dimensions

Readers on

mendeley
49 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Transcriptomic Response of Resistant (PI613981–Malus sieversii) and Susceptible (“Royal Gala”) Genotypes of Apple to Blue Mold (Penicillium expansum) Infection
Published in
Frontiers in Plant Science, November 2017
DOI 10.3389/fpls.2017.01981
Pubmed ID
Authors

Ana-Rosa Ballester, John Norelli, Erik Burchard, Ahmed Abdelfattah, Elena Levin, Luis González-Candelas, Samir Droby, Michael Wisniewski

Abstract

Malus sieversii from Central Asia is a progenitor of the modern domesticated apple (Malus × domestica). Several accessions of M. sieversii are highly resistant to the postharvest pathogen Penicillium expansum. A previous study identified the qM-Pe3.1 QTL on LG3 for resistance to P. expansum in the mapping population GMAL4593, developed using the resistant accession, M. sieversii -PI613981, and the susceptible cultivar "Royal Gala" (RG) (M. domestica), as parents. The goal of the present study was to characterize the transcriptomic response of susceptible RG and resistant PI613981 apple fruit to wounding and inoculation with P. expansum using RNA-Seq. Transcriptomic analyses 0-48 h post inoculation suggest a higher basal level of resistance and a more rapid and intense defense response to wounding and wounding plus inoculation with P. expansum in M. sieversii -PI613981 than in RG. Functional analysis showed that ethylene-related genes and genes involved in "jasmonate" and "MYB-domain transcription factor family" were over-represented in the resistant genotype. It is suggested that the more rapid response in the resistant genotype (Malus sieversii-PI613981) plays a major role in the resistance response. At least twenty DEGs were mapped to the qM-Pe3.1 QTL (M × d v.1: 26,848,396-28,424,055) on LG3, and represent potential candidate genes responsible for the observed resistance QTL in M. sieversii-PI613981. RT-qPCR of several of these genes was used to validate the RNA-Seq data and to confirm their higher expression in MS0.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 49 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 49 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 20%
Student > Master 9 18%
Researcher 8 16%
Student > Doctoral Student 3 6%
Student > Bachelor 2 4%
Other 5 10%
Unknown 12 24%
Readers by discipline Count As %
Agricultural and Biological Sciences 29 59%
Biochemistry, Genetics and Molecular Biology 3 6%
Unspecified 1 2%
Nursing and Health Professions 1 2%
Earth and Planetary Sciences 1 2%
Other 0 0%
Unknown 14 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 July 2021.
All research outputs
#5,758,817
of 23,007,887 outputs
Outputs from Frontiers in Plant Science
#2,967
of 20,507 outputs
Outputs of similar age
#83,760
of 294,546 outputs
Outputs of similar age from Frontiers in Plant Science
#83
of 434 outputs
Altmetric has tracked 23,007,887 research outputs across all sources so far. This one has received more attention than most of these and is in the 74th percentile.
So far Altmetric has tracked 20,507 research outputs from this source. They receive a mean Attention Score of 4.0. This one has done well, scoring higher than 85% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 294,546 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.
We're also able to compare this research output to 434 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 80% of its contemporaries.