↓ Skip to main content

Putative Microsatellite DNA Marker-Based Wheat Genomic Resource for Varietal Improvement and Management

Overview of attention for article published in Frontiers in Plant Science, November 2017
Altmetric Badge

Mentioned by

twitter
3 X users

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
47 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Putative Microsatellite DNA Marker-Based Wheat Genomic Resource for Varietal Improvement and Management
Published in
Frontiers in Plant Science, November 2017
DOI 10.3389/fpls.2017.02009
Pubmed ID
Authors

Sarika Jaiswal, Sonia Sheoran, Vasu Arora, Ulavappa B. Angadi, Mir A. Iquebal, Nishu Raghav, Bharti Aneja, Deepender Kumar, Rajender Singh, Pradeep Sharma, G. P. Singh, Anil Rai, Ratan Tiwari, Dinesh Kumar

Abstract

Wheat fulfills 20% of global caloric requirement. World needs 60% more wheat for 9 billion population by 2050 but climate change with increasing temperature is projected to affect wheat productivity adversely. Trait improvement and management of wheat germplasm requires genomic resource. Simple Sequence Repeats (SSRs) being highly polymorphic and ubiquitously distributed in the genome, can be a marker of choice but there is no structured marker database with options to generate primer pairs for genotyping on desired chromosome/physical location. Previously associated markers with different wheat trait are also not available in any database. Limitations of in vitro SSR discovery can be overcome by genome-wide in silico mining of SSR. Triticum aestivum SSR database (TaSSRDb) is an integrated online database with three-tier architecture, developed using PHP and MySQL and accessible at http://webtom.cabgrid.res.in/wheatssr/. For genotyping, Primer3 standalone code computes primers on user request. Chromosome-wise SSR calling for all the three sub genomes along with choice of motif types is provided in addition to the primer generation for desired marker. We report here a database of highest number of SSRs (476,169) from complex, hexaploid wheat genome (~17 GB) along with previously reported 268 SSR markers associated with 11 traits. Highest (116.93 SSRs/Mb) and lowest (74.57 SSRs/Mb) SSR densities were found on 2D and 3A chromosome, respectively. To obtain homozygous locus, e-PCR was done. Such 30 loci were randomly selected for PCR validation in panel of 18 wheat Advance Varietal Trial (AVT) lines. TaSSRDb can be a valuable genomic resource tool for linkage mapping, gene/QTL (Quantitative trait locus) discovery, diversity analysis, traceability and variety identification. Varietal specific profiling and differentiation can supplement DUS (Distinctiveness, Uniformity, and Stability) testing, EDV (Essentially Derived Variety)/IV (Initial Variety) disputes, seed purity and hybrid wheat testing. All these are required in germplasm management as well as also in the endeavor of wheat productivity.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 47 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 47 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 21%
Researcher 9 19%
Student > Doctoral Student 4 9%
Student > Bachelor 3 6%
Professor > Associate Professor 3 6%
Other 7 15%
Unknown 11 23%
Readers by discipline Count As %
Agricultural and Biological Sciences 18 38%
Biochemistry, Genetics and Molecular Biology 5 11%
Engineering 3 6%
Computer Science 3 6%
Nursing and Health Professions 1 2%
Other 3 6%
Unknown 14 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 January 2018.
All research outputs
#17,922,331
of 23,011,300 outputs
Outputs from Frontiers in Plant Science
#12,219
of 20,507 outputs
Outputs of similar age
#306,000
of 438,556 outputs
Outputs of similar age from Frontiers in Plant Science
#279
of 436 outputs
Altmetric has tracked 23,011,300 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,507 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 438,556 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 436 others from the same source and published within six weeks on either side of this one. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.