↓ Skip to main content

Resilient Leaf Physiological Response of European Beech (Fagus sylvatica L.) to Summer Drought and Drought Release

Overview of attention for article published in Frontiers in Plant Science, February 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
61 Dimensions

Readers on

mendeley
95 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Resilient Leaf Physiological Response of European Beech (Fagus sylvatica L.) to Summer Drought and Drought Release
Published in
Frontiers in Plant Science, February 2018
DOI 10.3389/fpls.2018.00187
Pubmed ID
Authors

Ellen E. Pflug, Nina Buchmann, Rolf T. W. Siegwolf, Marcus Schaub, Andreas Rigling, Matthias Arend

Abstract

Drought is a major environmental constraint to trees, causing severe stress and thus adversely affecting their functional integrity. European beech (Fagus sylvatica L.) is a key species in mesic forests that is commonly expected to suffer in a future climate with more intense and frequent droughts. Here, we assessed the seasonal response of leaf physiological characteristics of beech saplings to drought and drought release to investigate their potential to recover from the imposed stress and overcome previous limitations. Saplings were transplanted to model ecosystems and exposed to a simulated summer drought. Pre-dawn water potentials (ψpd), stomatal conductance (gS), intercellular CO2 concentration (ci), net-photosynthesis (AN), PSII chlorophyll fluorescence (PItot), non-structural carbohydrate concentrations (NSC; soluble sugars, starch) and carbon isotope signatures were measured in leaves throughout the growing season. Pre-dawn water potentials (ψpd), gS, ci, AN, and PItot decreased as drought progressed, and the concentration of soluble sugars increased at the expense of starch. Carbon isotopes in soluble sugars (δ13CS) showed a distinct increase under drought, suggesting, together with decreased ci, stomatal limitation of AN. Drought effects on ψpd, ci, and NSC disappeared shortly after re-watering, while full recovery of gS, AN, and PItot was delayed by 1 week. The fast recovery of NSC was reflected by a rapid decay of the drought signal in δ13C values, indicating a rapid turnover of assimilates and a reactivation of carbon metabolism. After recovery, the previously drought-exposed saplings showed a stimulation of AN and a trend toward elevated starch concentrations, which counteracted the previous drought limitations. Overall, our results suggest that the internal water relations of beech saplings and the physiological activity of leaves are restored rapidly after drought release. In the case of AN, stimulation after drought may partially compensate for limitations on photosynthetic activity during drought. Our observations suggest high resilience of beech to drought, contradicting the general belief that beech is particularly sensitive to environmental stressors.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 95 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 95 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 22 23%
Researcher 19 20%
Student > Master 15 16%
Student > Doctoral Student 3 3%
Student > Bachelor 2 2%
Other 8 8%
Unknown 26 27%
Readers by discipline Count As %
Agricultural and Biological Sciences 29 31%
Environmental Science 21 22%
Earth and Planetary Sciences 4 4%
Unspecified 2 2%
Engineering 2 2%
Other 5 5%
Unknown 32 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 March 2018.
All research outputs
#20,469,520
of 23,028,364 outputs
Outputs from Frontiers in Plant Science
#16,447
of 20,570 outputs
Outputs of similar age
#292,332
of 330,824 outputs
Outputs of similar age from Frontiers in Plant Science
#407
of 461 outputs
Altmetric has tracked 23,028,364 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,570 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,824 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 461 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.