↓ Skip to main content

Arabidopsis PCaP2 Plays an Important Role in Chilling Tolerance and ABA Response by Activating CBF- and SnRK2-Mediated Transcriptional Regulatory Network

Overview of attention for article published in Frontiers in Plant Science, March 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
30 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Arabidopsis PCaP2 Plays an Important Role in Chilling Tolerance and ABA Response by Activating CBF- and SnRK2-Mediated Transcriptional Regulatory Network
Published in
Frontiers in Plant Science, March 2018
DOI 10.3389/fpls.2018.00215
Pubmed ID
Authors

Xianling Wang, Lu Wang, Yu Wang, Huan Liu, Dan Hu, Ning Zhang, Shaobin Zhang, Huiying Cao, Qijiang Cao, Zhihong Zhang, Shuang Tang, Dandan Song, Che Wang

Abstract

Chilling stress affects plant growth and productivity. However, the multi-underlying mechanisms of chilling tolerance are not well understood. Arabidopsis PCaP2 is involved in regulating the dynamic of microtubules (MTs) and F-actin and Ca2+-binding ability. Here, the results showed that the PCaP2 expression was highly induced in roots, cotyledons, true leaves, lateral roots and flowers under cold stress. Compared with the wild type, PCaP2-overexpressing plants displayed the enhanced tolerance, whereas its RNAi and mutant were more sensitive in seed germination, seedling and reproductive growth under chilling stress in Arabidopsis. In addition, PCaP2 was also a positive regulator of ABA signaling pathway by analyzing the expression of PCaP2 and the phenotypes of PCaP2-overexpressing, mutant and RNAi plants under ABA treatment. Interestingly, disruption of PCaP2 inhibited the expression of CBF1, -3 and CBF-target COR genes, while increased the CBF2 expression in response to cold or ABA. Moreover, we found that SnRK2s were involved in cold stress and PCaP2 mutants down-regulated the transcription level of SnRK2.2, -2.3 and SnRK2-mediated downstream genes including ABF2, RD29A, KIN1, KIN2, but up-regulated SnRK2.6, ABF1, -3, -4 in ABA and cold treatments. It is well-accepted that PCaP2 as a Ca2+-binding protein triggers the gene expression to enhance plant chilling tolerance. Our further studies showed that MT destabilizing activity of PCaP2, but not F-actin-severing function, may be involved in chilling stress. Taken together, our results highlight that PCaP2 plays an important role in chilling tolerance and ABA response by triggering the CBF- and SnRK2-meditated transcriptional regulatory pathways, providing novel evidences of underlying mechanisms of multi-pathways in chilling stress.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 30 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 30 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 20%
Student > Ph. D. Student 5 17%
Student > Master 3 10%
Student > Bachelor 2 7%
Other 2 7%
Other 6 20%
Unknown 6 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 16 53%
Biochemistry, Genetics and Molecular Biology 6 20%
Chemistry 1 3%
Unknown 7 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 April 2018.
All research outputs
#13,592,375
of 23,043,346 outputs
Outputs from Frontiers in Plant Science
#6,758
of 20,602 outputs
Outputs of similar age
#172,604
of 332,640 outputs
Outputs of similar age from Frontiers in Plant Science
#207
of 474 outputs
Altmetric has tracked 23,043,346 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,602 research outputs from this source. They receive a mean Attention Score of 4.0. This one has gotten more attention than average, scoring higher than 64% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,640 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 474 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.