↓ Skip to main content

QTL-By-Environment Interaction in the Response of Maize Root and Shoot Traits to Different Water Regimes

Overview of attention for article published in Frontiers in Plant Science, February 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Readers on

mendeley
63 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
QTL-By-Environment Interaction in the Response of Maize Root and Shoot Traits to Different Water Regimes
Published in
Frontiers in Plant Science, February 2018
DOI 10.3389/fpls.2018.00229
Pubmed ID
Authors

Pengcheng Li, Yingying Zhang, Shuangyi Yin, Pengfei Zhu, Ting Pan, Yang Xu, Jieyu Wang, Derong Hao, Huimin Fang, Chenwu Xu, Zefeng Yang

Abstract

Drought is a major abiotic stress factor limiting maize production, and elucidating the genetic control of root system architecture and plasticity to water-deficit stress is a crucial problem to improve drought adaptability. In this study, 13 root and shoot traits and genetic plasticity were evaluated in a recombinant inbred line (RIL) population under well-watered (WW) and water stress (WS) conditions. Significant phenotypic variation was observed for all observed traits both under WW and WS conditions. Most of the measured traits showed significant genotype-environment interaction (GEI) in both environments. Strong correlations were observed among traits in the same class. Multi-environment (ME) and multi-trait (MT) QTL analyses were conducted for all observed traits. A total of 48 QTLs were identified by ME, including 15 QTLs associated with 9 traits showing significant QTL-by-Environment interactions (QEI). QTLs associated with crown root angle (CRA2) and crown root length (CRL1) were identified as having antagonistic pleiotropic effects, while 13 other QTLs showed signs of conditional neutrality (CN), including 9 and 4 QTLs detected under WW and WS conditions, respectively. MT analysis identified 14 pleiotropic QTLs for 13 traits, SNP20 ([email protected] cM) was associated with the length of crown root (CR), primary root (PR), and seminal root (SR) and might contribute to increases in root length under WS condition. Taken together, these findings contribute to our understanding of the phenotypic and genotypic patterns of root plasticity in response to water deficiency, which will be useful to improve drought tolerance in maize.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 63 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 63 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 17%
Researcher 8 13%
Student > Bachelor 5 8%
Student > Doctoral Student 4 6%
Professor > Associate Professor 4 6%
Other 4 6%
Unknown 27 43%
Readers by discipline Count As %
Agricultural and Biological Sciences 26 41%
Biochemistry, Genetics and Molecular Biology 4 6%
Unspecified 1 2%
Earth and Planetary Sciences 1 2%
Psychology 1 2%
Other 0 0%
Unknown 30 48%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 April 2018.
All research outputs
#14,378,457
of 23,026,672 outputs
Outputs from Frontiers in Plant Science
#8,278
of 20,560 outputs
Outputs of similar age
#187,863
of 330,332 outputs
Outputs of similar age from Frontiers in Plant Science
#247
of 471 outputs
Altmetric has tracked 23,026,672 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,560 research outputs from this source. They receive a mean Attention Score of 4.0. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,332 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 471 others from the same source and published within six weeks on either side of this one. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.