↓ Skip to main content

Flow Management to Control Excessive Growth of Macrophytes – An Assessment Based on Habitat Suitability Modeling

Overview of attention for article published in Frontiers in Plant Science, March 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
64 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Flow Management to Control Excessive Growth of Macrophytes – An Assessment Based on Habitat Suitability Modeling
Published in
Frontiers in Plant Science, March 2018
DOI 10.3389/fpls.2018.00356
Pubmed ID
Authors

Konstantin Ochs, Rui P. Rivaes, Teresa Ferreira, Gregory Egger

Abstract

Mediterranean rivers in intensive agricultural watersheds usually display outgrowths of macrophytes - notably alien species - due to a combination of high concentrations of nutrients in the water runoff and low flows resulting from water abstraction for irrigation. Standard mechanical and chemical control is used to mitigate the problems associated with excessive growth of plant biomass: mainly less drainage capacity and higher flood risk. However, such control measures are cost and labor-intensive and do not present long-term efficiency. Although the high sensitivity of aquatic vegetation to instream hydraulic conditions is well known, management approaches based on flow management remain relatively unexplored. The aim of our study was therefore to apply physical habitat simulation techniques promoted by the Instream Flow Incremental Method (IFIM) to aquatic macrophytes - the first time it has been applied in this context - in order to model shifts in habitat suitability under different flow scenarios in the Sorraia river in central Portugal. We used this approach to test whether the risk of invasion and channel encroachment by nuisance species can be controlled by setting minimum annual flows. We used 960 randomly distributed survey points to analyze the habitat suitability for the most important aquatic species (including the invasive Brazilian milfoil Myriophyllum aquaticum, Sparganium erectum, and Potamogeton crispus) in regard to the physical parameters 'flow velocity,' 'water depth,' and 'substrate size'. We chose the lowest discharge period of the year in order to assess the hydraulic conditions while disturbances were at a low-point, thus allowing aquatic vegetation establishment and subsistence. We then used the two-dimensional hydraulic River2D software to model the potential habitat availability for different flow conditions based on the site-specific habitat suitability index for each physical parameter and species. Our results show that the growth and distribution of macrophytes in the hydrologically stable vegetation period is primarily a function of the local physical instream condition. Using site-specific preference curves and a two-dimensional hydraulic model, it was possible to determine minimum annual flows that might prevent the excessive growth and channel encroachment caused by Myriophyllum aquaticum.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 64 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 64 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 13 20%
Student > Ph. D. Student 9 14%
Student > Bachelor 7 11%
Student > Master 4 6%
Student > Doctoral Student 3 5%
Other 11 17%
Unknown 17 27%
Readers by discipline Count As %
Environmental Science 19 30%
Agricultural and Biological Sciences 8 13%
Engineering 5 8%
Biochemistry, Genetics and Molecular Biology 1 2%
Computer Science 1 2%
Other 8 13%
Unknown 22 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 April 2018.
All research outputs
#20,483,282
of 23,045,021 outputs
Outputs from Frontiers in Plant Science
#16,491
of 20,607 outputs
Outputs of similar age
#293,503
of 332,303 outputs
Outputs of similar age from Frontiers in Plant Science
#416
of 468 outputs
Altmetric has tracked 23,045,021 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,607 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,303 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 468 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.