↓ Skip to main content

Heterotrimeric G-Protein γ Subunit CsGG3.2 Positively Regulates the Expression of CBF Genes and Chilling Tolerance in Cucumber

Overview of attention for article published in Frontiers in Plant Science, April 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
17 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Heterotrimeric G-Protein γ Subunit CsGG3.2 Positively Regulates the Expression of CBF Genes and Chilling Tolerance in Cucumber
Published in
Frontiers in Plant Science, April 2018
DOI 10.3389/fpls.2018.00488
Pubmed ID
Authors

Longqiang Bai, Yumei Liu, Ying Mu, Ali Anwar, Chaoxing He, Yan Yan, Yansu Li, Xianchang Yu

Abstract

Heterotrimeric guanine nucleotide-binding proteins (G proteins) composed of alpha (Gα), beta (Gβ), and gamma (Gγ) subunits are central signal transducers mediating the cellular response to multiple stimuli, such as cold, in eukaryotes. Plant Gγ subunits, divided into A, B, and C three structurally distinct types, provide proper cellular localization and functional specificity to the heterotrimer complex. Here, we demonstrate that a type C Gγ subunit CsGG3.2 is involved in the regulation of the CBF regulon and plant tolerance to cold stresses in cucumber (Cucumis sativus L.). We showed that CsGG3.2 transcript abundance was positively induced by cold treatments. Transgenic cucumber plants (T1) constitutively over-expressing CsGG3.2 exhibits tolerance to chilling conditions and increased expression of CBF genes and their regulon. Antioxidative enzymes, i.e., superoxide dismutase, catalase, peroxidase, and glutathione reductase activities increased in cold-stressed transgenic plants. The reactive oxygen species, oxygen free radical and H2O2, production, as well as membrane lipid peroxidation (MDA) production decreased in transgenic plants, suggesting a better antioxidant system to cope the oxidative-damages caused by cold stress. These findings provide evidence for a critical role of CsGG3.2 in mediating cold signal transduction in plant cells.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 18%
Student > Bachelor 3 18%
Professor > Associate Professor 2 12%
Student > Ph. D. Student 2 12%
Other 1 6%
Other 0 0%
Unknown 6 35%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 47%
Pharmacology, Toxicology and Pharmaceutical Science 2 12%
Biochemistry, Genetics and Molecular Biology 1 6%
Psychology 1 6%
Unknown 5 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 May 2018.
All research outputs
#14,982,922
of 23,047,237 outputs
Outputs from Frontiers in Plant Science
#9,442
of 20,616 outputs
Outputs of similar age
#197,562
of 327,039 outputs
Outputs of similar age from Frontiers in Plant Science
#233
of 428 outputs
Altmetric has tracked 23,047,237 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,616 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,039 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 428 others from the same source and published within six weeks on either side of this one. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.