↓ Skip to main content

Topological Data Analysis as a Morphometric Method: Using Persistent Homology to Demarcate a Leaf Morphospace

Overview of attention for article published in Frontiers in Plant Science, April 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (91st percentile)
  • High Attention Score compared to outputs of the same age and source (97th percentile)

Mentioned by

blogs
1 blog
twitter
33 X users
facebook
1 Facebook page

Citations

dimensions_citation
55 Dimensions

Readers on

mendeley
113 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Topological Data Analysis as a Morphometric Method: Using Persistent Homology to Demarcate a Leaf Morphospace
Published in
Frontiers in Plant Science, April 2018
DOI 10.3389/fpls.2018.00553
Pubmed ID
Authors

Mao Li, Hong An, Ruthie Angelovici, Clement Bagaza, Albert Batushansky, Lynn Clark, Viktoriya Coneva, Michael J. Donoghue, Erika Edwards, Diego Fajardo, Hui Fang, Margaret H. Frank, Timothy Gallaher, Sarah Gebken, Theresa Hill, Shelley Jansky, Baljinder Kaur, Phillip C. Klahs, Laura L. Klein, Vasu Kuraparthy, Jason Londo, Zoë Migicovsky, Allison Miller, Rebekah Mohn, Sean Myles, Wagner C. Otoni, J. C. Pires, Edmond Rieffer, Sam Schmerler, Elizabeth Spriggs, Christopher N. Topp, Allen Van Deynze, Kuang Zhang, Linglong Zhu, Braden M. Zink, Daniel H. Chitwood

Abstract

Current morphometric methods that comprehensively measure shape cannot compare the disparate leaf shapes found in seed plants and are sensitive to processing artifacts. We explore the use of persistent homology, a topological method applied as a filtration across simplicial complexes (or more simply, a method to measure topological features of spaces across different spatial resolutions), to overcome these limitations. The described method isolates subsets of shape features and measures the spatial relationship of neighboring pixel densities in a shape. We apply the method to the analysis of 182,707 leaves, both published and unpublished, representing 141 plant families collected from 75 sites throughout the world. By measuring leaves from throughout the seed plants using persistent homology, a defined morphospace comparing all leaves is demarcated. Clear differences in shape between major phylogenetic groups are detected and estimates of leaf shape diversity within plant families are made. The approach predicts plant family above chance. The application of a persistent homology method, using topological features, to measure leaf shape allows for a unified morphometric framework to measure plant form, including shapes, textures, patterns, and branching architectures.

X Demographics

X Demographics

The data shown below were collected from the profiles of 33 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 113 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 113 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 23 20%
Researcher 22 19%
Student > Master 10 9%
Student > Bachelor 9 8%
Student > Doctoral Student 8 7%
Other 16 14%
Unknown 25 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 42 37%
Biochemistry, Genetics and Molecular Biology 15 13%
Engineering 7 6%
Physics and Astronomy 5 4%
Computer Science 3 3%
Other 15 13%
Unknown 26 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 27. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 February 2021.
All research outputs
#1,444,819
of 25,721,020 outputs
Outputs from Frontiers in Plant Science
#445
of 24,915 outputs
Outputs of similar age
#30,490
of 340,678 outputs
Outputs of similar age from Frontiers in Plant Science
#11
of 433 outputs
Altmetric has tracked 25,721,020 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 94th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 24,915 research outputs from this source. They receive a mean Attention Score of 3.9. This one has done particularly well, scoring higher than 98% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 340,678 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 91% of its contemporaries.
We're also able to compare this research output to 433 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 97% of its contemporaries.