↓ Skip to main content

Transcription Factor SmWRKY1 Positively Promotes the Biosynthesis of Tanshinones in Salvia miltiorrhiza

Overview of attention for article published in Frontiers in Plant Science, April 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
94 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Transcription Factor SmWRKY1 Positively Promotes the Biosynthesis of Tanshinones in Salvia miltiorrhiza
Published in
Frontiers in Plant Science, April 2018
DOI 10.3389/fpls.2018.00554
Pubmed ID
Authors

Wenzhi Cao, Yao Wang, Min Shi, Xiaolong Hao, Weiwei Zhao, Yu Wang, Jie Ren, Guoyin Kai

Abstract

Tanshinones, one group of bioactive diterpenes, were widely used in the treatment of cardiovascular diseases. WRKYs play important roles in plant metabolism, but their regulation mechanism in Salvia miltiorrhiza remains elusive. In this study, one WRKY transcription factor SmWRKY1 was isolated and functionally characterized from S. miltiorrhiza. Multiple sequence alignment and phylogenetic tree analysis showed SmWRKY1 shared high homology with other plant WRKYs such as CrWRKY1. SmWRKY1 was found predominantly expressed in leaves and stems, and was responsive to salicylic acid (SA), methyl jasmonate (MeJA), and nitric oxide (NO) treatment. Subcellular localization analysis found that SmWRKY1 was localized in the nucleus. Over-expression of SmWRKY1 significantly elevated the transcripts of genes coding for enzymes in the MEP pathway especially 1-deoxy-D-xylulose-5-phosphate synthase (SmDXS) and 1-deoxy-D-xylulose-5-phosphate reductoisomerase (SmDXR), resulted in over fivefold increase in tanshinones production in transgenic lines (up to 13.7 mg/g DW) compared with the control lines. A dual-luciferase (Dual-LUC) assay showed that SmWRKY1 can positively regulate SmDXR expression by binding to its promoter. Our work revealed that SmWRKY1 participated in the regulation of tanshinones biosynthesis and acted as a positive regulator through activating SmDXR in the MEP pathway, thus provided a new insight to further explore the regulation mechanism of tanshinones biosynthesis.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 31 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 16%
Researcher 3 10%
Student > Bachelor 2 6%
Student > Master 2 6%
Professor > Associate Professor 2 6%
Other 2 6%
Unknown 15 48%
Readers by discipline Count As %
Agricultural and Biological Sciences 7 23%
Biochemistry, Genetics and Molecular Biology 6 19%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Chemical Engineering 1 3%
Social Sciences 1 3%
Other 0 0%
Unknown 15 48%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 June 2018.
All research outputs
#20,518,141
of 23,085,832 outputs
Outputs from Frontiers in Plant Science
#16,553
of 20,687 outputs
Outputs of similar age
#287,537
of 326,549 outputs
Outputs of similar age from Frontiers in Plant Science
#377
of 430 outputs
Altmetric has tracked 23,085,832 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,687 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,549 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 430 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.