↓ Skip to main content

Why Does Not the Leaf Weight-Area Allometry of Bamboos Follow the 3/2-Power Law?

Overview of attention for article published in Frontiers in Plant Science, May 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Why Does Not the Leaf Weight-Area Allometry of Bamboos Follow the 3/2-Power Law?
Published in
Frontiers in Plant Science, May 2018
DOI 10.3389/fpls.2018.00583
Pubmed ID
Authors

Shuyan Lin, Lijuan Shao, Cang Hui, Yu Song, Gadi V. P. Reddy, Johan Gielis, Fang Li, Yulong Ding, Qiang Wei, Peijian Shi

Abstract

The principle of similarity (Thompson, 1917) states that the weight of an organism follows the 3/2-power law of its surface area and is proportional to its volume on the condition that the density is constant. However, the allometric relationship between leaf weight and leaf area has been reported to greatly deviate from the 3/2-power law, with the irregularity of leaf density largely ignored for explaining this deviation. Here, we choose 11 bamboo species to explore the allometric relationships among leaf area (A), density (ρ), length (L), thickness (T), and weight (W). Because the edge of a bamboo leaf follows a simplified two-parameter Gielis equation, we could show that A ∝ L2 and that A ∝ T2. This then allowed us to derive the density-thickness allometry ρ ∝ T b and the weight-area allometry W ∝ A(b+3)/2 ≈ A9/8, where b approximates -3/4. Leaf density is strikingly negatively associated with leaf thickness, and it is this inverse relationship that results in the weight-area allometry to deviate from the 3/2-power law. In conclusion, although plants are prone to invest less dry mass and thus produce thinner leaves when the leaf area is sufficient for photosynthesis, such leaf thinning needs to be accompanied with elevated density to ensure structural stability. The findings provide the insights on the evolutionary clue about the biomass investment and output of photosynthetic organs of plants. Because of the importance of leaves, plants could have enhanced the ratio of dry material per unit area of leaf in order to increase the efficiency of photosynthesis, relative the other parts of plants. Although the conclusion is drawn only based on 11 bamboo species, it should also be applicable to the other plants, especially considering previous works on the exponent of the weight-area relationship being less than 3/2 in plants.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 16%
Researcher 3 16%
Lecturer 2 11%
Student > Ph. D. Student 2 11%
Other 1 5%
Other 2 11%
Unknown 6 32%
Readers by discipline Count As %
Agricultural and Biological Sciences 7 37%
Environmental Science 2 11%
Energy 1 5%
Neuroscience 1 5%
Engineering 1 5%
Other 0 0%
Unknown 7 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 June 2018.
All research outputs
#14,981,465
of 23,045,021 outputs
Outputs from Frontiers in Plant Science
#9,442
of 20,607 outputs
Outputs of similar age
#197,275
of 326,672 outputs
Outputs of similar age from Frontiers in Plant Science
#232
of 431 outputs
Altmetric has tracked 23,045,021 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,607 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,672 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 431 others from the same source and published within six weeks on either side of this one. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.