↓ Skip to main content

Interactions Between Drought and Plant Genotype Change Epidemiological Traits of Cauliflower mosaic virus

Overview of attention for article published in Frontiers in Plant Science, May 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
34 Dimensions

Readers on

mendeley
62 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Interactions Between Drought and Plant Genotype Change Epidemiological Traits of Cauliflower mosaic virus
Published in
Frontiers in Plant Science, May 2018
DOI 10.3389/fpls.2018.00703
Pubmed ID
Authors

Sandy E. Bergès, Denis Vile, Cecilia Vazquez-Rovere, Stéphane Blanc, Michel Yvon, Alexis Bédiée, Gaëlle Rolland, Myriam Dauzat, Manuella van Munster

Abstract

Plants suffer from a broad range of abiotic and biotic stresses that do not occur in isolation but often simultaneously. Productivity of natural and agricultural systems is frequently constrained by water limitation, and the frequency and duration of drought periods will likely increase due to global climate change. In addition, phytoviruses represent highly prevalent biotic threat in wild and cultivated plant species. Several hints support a modification of epidemiological parameters of plant viruses in response to environmental changes but a clear quantification of plant-virus interactions under abiotic stresses is still lacking. Here we report the effects of a water deficit on epidemiological parameters of Cauliflower mosaic virus (CaMV), a non-circulative virus transmitted by aphid vectors, in nine natural accessions of Arabidopsis thaliana with known contrasted responses to water deficit. Plant growth-related traits and virus epidemiological parameters were evaluated in PHENOPSIS, an automated high throughput phenotyping platform. Water deficit had contrasted effects on CaMV transmission rate and viral load among A. thaliana accessions. Under well-watered conditions, transmission rate tended to increase with viral load and with CaMV virulence across accessions. Under water deficit, transmission rate and virulence were negatively correlated. Changes in the rate of transmission under water deficit were not related to changes in viral load. Our results support the idea that optimal virulence of a given virus, as hypothesized under the transmission-virulence trade-off, is highly dependent on the environment and growth traits of the host.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 62 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 62 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 12 19%
Professor 7 11%
Student > Bachelor 7 11%
Student > Ph. D. Student 6 10%
Student > Master 5 8%
Other 10 16%
Unknown 15 24%
Readers by discipline Count As %
Agricultural and Biological Sciences 30 48%
Biochemistry, Genetics and Molecular Biology 8 13%
Immunology and Microbiology 2 3%
Chemical Engineering 1 2%
Economics, Econometrics and Finance 1 2%
Other 3 5%
Unknown 17 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 July 2018.
All research outputs
#14,107,269
of 23,047,237 outputs
Outputs from Frontiers in Plant Science
#7,402
of 20,616 outputs
Outputs of similar age
#180,335
of 330,315 outputs
Outputs of similar age from Frontiers in Plant Science
#201
of 464 outputs
Altmetric has tracked 23,047,237 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,616 research outputs from this source. They receive a mean Attention Score of 4.0. This one has gotten more attention than average, scoring higher than 60% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,315 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 464 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.