↓ Skip to main content

Suppression of HopZ Effector-Triggered Plant Immunity in a Natural Pathosystem

Overview of attention for article published in Frontiers in Plant Science, August 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Suppression of HopZ Effector-Triggered Plant Immunity in a Natural Pathosystem
Published in
Frontiers in Plant Science, August 2018
DOI 10.3389/fpls.2018.00977
Pubmed ID
Authors

José S. Rufián, Ainhoa Lucía, Javier Rueda-Blanco, Adela Zumaquero, Carlos M. Guevara, Inmaculada Ortiz-Martín, Gonzalo Ruiz-Aldea, Alberto P. Macho, Carmen R. Beuzón, Javier Ruiz-Albert

Abstract

Many type III-secreted effectors suppress plant defenses, but can also activate effector-triggered immunity (ETI) in resistant backgrounds. ETI suppression has been shown for a number of type III effectors (T3Es) and ETI-suppressing effectors are considered part of the arms race model for the co-evolution of bacterial virulence and plant defense. However, ETI suppression activities have been shown mostly between effectors not being naturally expressed within the same strain. Furthermore, evolution of effector families is rarely explained taking into account that selective pressure against ETI-triggering effectors may be compensated by ETI-suppressing effector(s) translocated by the same strain. The HopZ effector family is one of the most diverse, displaying a high rate of loss and gain of alleles, which reflects opposing selective pressures. HopZ effectors trigger defense responses in a variety of crops and some have been shown to suppress different plant defenses. Mutational changes in the sequence of ETI-triggering effectors have been proposed to result in the avoidance of detection by their respective hosts, in a process called pathoadaptation. We analyze how deleting or overexpressing HopZ1a and HopZ3 affects virulence of HopZ-encoding and non-encoding strains. We find that both effectors trigger immunity in their plant hosts only when delivered from heterologous strains, while immunity is suppressed when delivered from their native strains. We carried out screens aimed at identifying the determinant(s) suppressing HopZ1a-triggered and HopZ3-triggered immunity within their native strains, and identified several effectors displaying suppression of HopZ3-triggered immunity. We propose effector-mediated cross-suppression of ETI as an additional force driving evolution of the HopZ family.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 36 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 28%
Researcher 6 17%
Student > Master 6 17%
Student > Doctoral Student 2 6%
Student > Bachelor 1 3%
Other 0 0%
Unknown 11 31%
Readers by discipline Count As %
Agricultural and Biological Sciences 14 39%
Biochemistry, Genetics and Molecular Biology 9 25%
Immunology and Microbiology 1 3%
Unknown 12 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 August 2018.
All research outputs
#19,954,338
of 25,385,509 outputs
Outputs from Frontiers in Plant Science
#14,373
of 24,608 outputs
Outputs of similar age
#249,816
of 341,562 outputs
Outputs of similar age from Frontiers in Plant Science
#338
of 475 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 24,608 research outputs from this source. They receive a mean Attention Score of 3.9. This one is in the 32nd percentile – i.e., 32% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 341,562 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 475 others from the same source and published within six weeks on either side of this one. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.