↓ Skip to main content

The Application of a Meiocyte-Specific CRISPR/Cas9 (MSC) System and a Suicide-MSC System in Generating Inheritable and Stable Mutations in Arabidopsis

Overview of attention for article published in Frontiers in Plant Science, July 2018
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (66th percentile)
  • Good Attention Score compared to outputs of the same age and source (77th percentile)

Mentioned by

twitter
9 X users
facebook
1 Facebook page

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Application of a Meiocyte-Specific CRISPR/Cas9 (MSC) System and a Suicide-MSC System in Generating Inheritable and Stable Mutations in Arabidopsis
Published in
Frontiers in Plant Science, July 2018
DOI 10.3389/fpls.2018.01007
Pubmed ID
Authors

Penghui Xu, Hang Su, Wanli Chen, Pingli Lu

Abstract

The CRISPR/Cas9 system has been widely used for generating targeted mutations in various species. In Arabidopsis, it largely relies on the edited cells where the Cas9 protein performs its activity to obtain heritable and stable mutated lines. Here, we designed an improved CRISPR/Cas9 system, named as the MSC (meiocyte-specific CRISPR/Cas9) system, in which the Cas9 expression is driven by an experimentally approved meiocyte-specific promoter (AtDMC1 promoter). Two endogenous genes, including vegetative gene AtDET2 and reproductive gene AtDMC1, were targeted. We obtained heterozygous T1 plants for targeted genes with high efficiency (64%). In the T2 generation, the homozygous plants were abundant with high efficiency (37%). Analysis of Sanger sequencing results of T2 generation revealed that heritable gene mutations were high (52%). Moreover, we showed that the MSC system could sufficiently delete a middle size DNA fragment (∼500 bp) between two cleavage sites with a high rate (64.15%) in the T1 plants, providing direct evidence for making complete knock-out or certain domain-depletion mutations. In addition, we further made a suicide-MSC system, which can edit the targeted endogenous gene and the exogenous Cas9 gene simultaneously, not only successfully avoiding the further destroy of alleles brought in by molecular complementary or genic allelic test, but also maintaining the stable mutated alleles for functional studies. In short, the two systems provide new approaches to generate mutations for gene functional studies.

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 15 43%
Student > Bachelor 3 9%
Other 2 6%
Student > Ph. D. Student 2 6%
Professor 2 6%
Other 4 11%
Unknown 7 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 18 51%
Biochemistry, Genetics and Molecular Biology 5 14%
Computer Science 1 3%
Psychology 1 3%
Engineering 1 3%
Other 0 0%
Unknown 9 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 August 2018.
All research outputs
#6,329,134
of 23,096,849 outputs
Outputs from Frontiers in Plant Science
#3,481
of 20,713 outputs
Outputs of similar age
#109,213
of 327,048 outputs
Outputs of similar age from Frontiers in Plant Science
#107
of 487 outputs
Altmetric has tracked 23,096,849 research outputs across all sources so far. This one has received more attention than most of these and is in the 72nd percentile.
So far Altmetric has tracked 20,713 research outputs from this source. They receive a mean Attention Score of 3.9. This one has done well, scoring higher than 82% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,048 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.
We're also able to compare this research output to 487 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 77% of its contemporaries.