↓ Skip to main content

NMR Metabolomics Defining Genetic Variation in Pea Seed Metabolites

Overview of attention for article published in Frontiers in Plant Science, July 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user
facebook
1 Facebook page

Readers on

mendeley
44 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
NMR Metabolomics Defining Genetic Variation in Pea Seed Metabolites
Published in
Frontiers in Plant Science, July 2018
DOI 10.3389/fpls.2018.01022
Pubmed ID
Authors

Noel Ellis, Chie Hattori, Jitender Cheema, James Donarski, Adrian Charlton, Michael Dickinson, Giampaolo Venditti, Péter Kaló, Zoltán Szabó, György B. Kiss, Claire Domoney

Abstract

Nuclear magnetic resonance (NMR) spectroscopy profiling was used to provide an unbiased assessment of changes to the metabolite composition of seeds and to define genetic variation for a range of pea seed metabolites. Mature seeds from recombinant inbred lines, derived from three mapping populations for which there is substantial genetic marker linkage information, were grown in two environments/years and analyzed by non-targeted NMR. Adaptive binning of the NMR metabolite data, followed by analysis of quantitative variation among lines for individual bins, identified the main genomic regions determining this metabolic variability and the variability for selected compounds was investigated. Analysis by t-tests identified a set of bins with highly significant associations to genetic map regions, based on probability (p) values that were appreciably lower than those determined for randomized data. The correlation between bins showing high mean absolute deviation and those showing low p-values for marker association provided an indication of the extent to which the genetics of bin variation might be explained by one or a few loci. Variation in compounds related to aromatic amino acids, branched-chain amino acids, sucrose-derived metabolites, secondary metabolites and some unidentified compounds was associated with one or more genetic loci. The combined analysis shows that there are multiple loci throughout the genome that together impact on the abundance of many compounds through a network of interactions, where individual loci may affect more than one compound and vice versa. This work therefore provides a framework for the genetic analysis of the seed metabolome, and the use of genetic marker data in the breeding and selection of seeds for specific seed quality traits and compounds that have high commercial value.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 44 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 13 30%
Student > Ph. D. Student 8 18%
Student > Master 4 9%
Student > Bachelor 2 5%
Professor 2 5%
Other 7 16%
Unknown 8 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 21 48%
Biochemistry, Genetics and Molecular Biology 6 14%
Business, Management and Accounting 1 2%
Environmental Science 1 2%
Immunology and Microbiology 1 2%
Other 1 2%
Unknown 13 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 August 2018.
All research outputs
#15,012,809
of 23,094,276 outputs
Outputs from Frontiers in Plant Science
#9,434
of 20,707 outputs
Outputs of similar age
#179,452
of 296,623 outputs
Outputs of similar age from Frontiers in Plant Science
#255
of 482 outputs
Altmetric has tracked 23,094,276 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,707 research outputs from this source. They receive a mean Attention Score of 3.9. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 296,623 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 482 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.