↓ Skip to main content

Transcriptome Analysis of Poplar Under Salt Stress and Over-Expression of Transcription Factor NAC57 Gene Confers Salt Tolerance in Transgenic Arabidopsis

Overview of attention for article published in Frontiers in Plant Science, September 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Readers on

mendeley
37 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Transcriptome Analysis of Poplar Under Salt Stress and Over-Expression of Transcription Factor NAC57 Gene Confers Salt Tolerance in Transgenic Arabidopsis
Published in
Frontiers in Plant Science, September 2018
DOI 10.3389/fpls.2018.01121
Pubmed ID
Authors

Wenjing Yao, Kai Zhao, Zihan Cheng, Xiyan Li, Boru Zhou, Tingbo Jiang

Abstract

NAC domain genes belong to a large plant-specific transcription factor family, which is well-known to be associated with multiple stress responses and plant developmental processes. In this study, we screened differentially expressed genes (DEGs) and detected mRNA abundance of NAC family by RNA-Seq in the poplar leaves under salt stress condition. A total of 276 up-regulated DEGs and 159 down-regulated DEGs were identified to be shared in Populus alba × Populus glandulosa and Populus simonii × Populus nigra. Among 170 NAC members, NAC57 gene was significantly up-regulated in response to salt stress in the two species. Tissue-specific and salt-responsive analyses indicated the expression pattern of NAC57 gene was spatial and temporal in poplar under salt stress. Particle bombardment results showed subcellular localization of NAC57 was not solely nucleus-targeted. Full-length cDNA sequence of the NAC57 gene was cloned from P. alba × P. glandulosa and transformed into Arabidopsis thaliana. Under salt stress, transgenic Arabidopsis overexpressing NAC57 showed higher seed germination rate, root length, and fresh weight than wild type plants. In addition, the transgenic plants displayed higher superoxide dismutase activity and peroxidase activity, and lower malondialdehyde content and relative electrical conductivity than the wild type under salt stress condition. Furthermore, histochemical staining indicated reactive oxygen species accumulation was lower in the transgenic plants than that in the wild type under salt stress. All the results indicated that the NAC57 gene plays an important role in salt stress responses.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 37 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 19%
Researcher 5 14%
Student > Doctoral Student 3 8%
Student > Bachelor 2 5%
Student > Master 2 5%
Other 4 11%
Unknown 14 38%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 32%
Biochemistry, Genetics and Molecular Biology 10 27%
Medicine and Dentistry 1 3%
Unknown 14 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 October 2018.
All research outputs
#14,431,072
of 23,577,654 outputs
Outputs from Frontiers in Plant Science
#7,699
of 21,632 outputs
Outputs of similar age
#183,172
of 336,555 outputs
Outputs of similar age from Frontiers in Plant Science
#205
of 440 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 21,632 research outputs from this source. They receive a mean Attention Score of 3.9. This one has gotten more attention than average, scoring higher than 61% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 336,555 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 440 others from the same source and published within six weeks on either side of this one. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.