↓ Skip to main content

Trichostatin A Triggers an Embryogenic Transition in Arabidopsis Explants via an Auxin-Related Pathway

Overview of attention for article published in Frontiers in Plant Science, September 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
45 Dimensions

Readers on

mendeley
70 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Trichostatin A Triggers an Embryogenic Transition in Arabidopsis Explants via an Auxin-Related Pathway
Published in
Frontiers in Plant Science, September 2018
DOI 10.3389/fpls.2018.01353
Pubmed ID
Authors

Barbara Wójcikowska, Malwina Botor, Joanna Morończyk, Anna Maria Wójcik, Tomasz Nodzyński, Jagna Karcz, Małgorzata D. Gaj

Abstract

Auxin is an important regulator of plant ontogenies including embryo development and the exogenous application of this phytohormone has been found to be necessary for the induction of the embryogenic response in plant explants that have been cultured in vitro. However, in the present study, we show that treatment of Arabidopsis explants with trichostatin A (TSA), which is a chemical inhibitor of histone deacetylases, induces somatic embryogenesis (SE) without the exogenous application of auxin. We found that the TSA-treated explants generated somatic embryos that developed efficiently on the adaxial side of the cotyledons, which are the parts of an explant that are involved in auxin-induced SE. A substantial reduction in the activity of histone deacetylase (HDAC) was observed in the TSA-treated explants, thus confirming a histone acetylation-related mechanism of the TSA-promoted embryogenic response. Unexpectedly, the embryogenic effect of TSA was lower on the auxin-supplemented media and this finding further suggests an auxin-related mechanism of TSA-induced SE. Congruently, we found a significantly increased content of indolic compounds, which is indicative of IAA and an enhanced DR5::GUS signal in the TSA-treated explants. In line with these results, two of the YUCCA genes (YUC1 and YUC10), which are involved in auxin biosynthesis, were found to be distinctly up-regulated during TSA-induced SE and their expression was colocalised with the explant sites that are involved in SE. Beside auxin, ROS were extensively accumulated in response to TSA, thereby indicating that a stress-response is involved in TSA-triggered SE. Relevantly, we showed that the genes encoding the transcription factors (TFs) that have a regulatory function in auxin biosynthesis including LEC1, LEC2, BBM, and stress responses (MYB118) were highly up-regulated in the TSA-treated explants. Collectively, the results provide several pieces of evidence about the similarities between the molecular pathways of SE induction that are triggered by TSA and 2,4-D that involve the activation of the auxin-responsive TF genes that have a regulatory function in auxin biosynthesis and stress responses. The study suggests the involvement of histone acetylation in the auxin-mediated release of the embryogenic program of development in the somatic cells of Arabidopsis.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 70 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 70 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 23%
Researcher 14 20%
Student > Master 11 16%
Student > Bachelor 6 9%
Professor 3 4%
Other 6 9%
Unknown 14 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 31 44%
Biochemistry, Genetics and Molecular Biology 17 24%
Business, Management and Accounting 2 3%
Nursing and Health Professions 1 1%
Mathematics 1 1%
Other 2 3%
Unknown 16 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 October 2018.
All research outputs
#18,650,639
of 23,105,443 outputs
Outputs from Frontiers in Plant Science
#14,092
of 20,728 outputs
Outputs of similar age
#259,372
of 337,958 outputs
Outputs of similar age from Frontiers in Plant Science
#343
of 438 outputs
Altmetric has tracked 23,105,443 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,728 research outputs from this source. They receive a mean Attention Score of 3.9. This one is in the 19th percentile – i.e., 19% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 337,958 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 438 others from the same source and published within six weeks on either side of this one. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.