↓ Skip to main content

The Timing of Change Detection and Change Perception in Complex Acoustic Scenes

Overview of attention for article published in Frontiers in Psychology, January 2012
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
50 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Timing of Change Detection and Change Perception in Complex Acoustic Scenes
Published in
Frontiers in Psychology, January 2012
DOI 10.3389/fpsyg.2012.00396
Pubmed ID
Authors

Zahrah Jaunmahomed, Maria Chait

Abstract

We investigated how listeners perceive the temporal relationship of a light flash and a complex acoustic signal. The stimulus mimics ubiquitous events in busy scenes which are manifested as a change in the pattern of on-going fluctuation. Detecting pattern emergence inherently requires integration over time; resulting in such events being detected later than when they occurred. How does delayed detection time affect the perception of such events relative to other events in the scene? To model these situations, we use rapid sequences of tone pips with a time-frequency pattern that changes from random to regular ("REG-RAND") or vice versa ("RAND-REG"). REG-RAND transitions are detected rapidly, but RAND-REG take longer to detect (∼880 ms post nominal transition). Using a Temporal Order Judgment task, we instructed subjects to indicate whether the flash appeared before or after the acoustic transition. The point of subjective simultaneity between the flash and RAND-REG does not occur at the point of detection (∼880 ms post nominal transition) but ∼470 ms closer to the nominal acoustic transition. In a second experiment we halved the tone pip duration. The resulting pattern of performance was qualitatively similar to that in Experiment 1, but scaled by half. Our results indicates that the brain possesses mechanisms that survey the proximal history of an on-going stimulus and automatically adjust perception so as to compensate for prolonged detection time, thus producing more accurate representations of scene dynamics. However, this readjustment is not complete.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 50 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 2 4%
Italy 1 2%
Germany 1 2%
Finland 1 2%
United States 1 2%
Unknown 44 88%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 26%
Researcher 8 16%
Student > Doctoral Student 8 16%
Professor > Associate Professor 7 14%
Student > Master 3 6%
Other 7 14%
Unknown 4 8%
Readers by discipline Count As %
Medicine and Dentistry 9 18%
Psychology 9 18%
Neuroscience 6 12%
Engineering 4 8%
Agricultural and Biological Sciences 3 6%
Other 10 20%
Unknown 9 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 October 2012.
All research outputs
#20,169,675
of 22,681,577 outputs
Outputs from Frontiers in Psychology
#23,783
of 29,399 outputs
Outputs of similar age
#221,189
of 244,101 outputs
Outputs of similar age from Frontiers in Psychology
#406
of 481 outputs
Altmetric has tracked 22,681,577 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 29,399 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 244,101 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 481 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.