↓ Skip to main content

When does word frequency influence written production?

Overview of attention for article published in Frontiers in Psychology, January 2013
Altmetric Badge

Mentioned by

twitter
2 X users

Readers on

mendeley
59 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
When does word frequency influence written production?
Published in
Frontiers in Psychology, January 2013
DOI 10.3389/fpsyg.2013.00963
Pubmed ID
Authors

Cristina Baus, Kristof Strijkers, Albert Costa

Abstract

The aim of the present study was to explore the central (e.g., lexical processing) and peripheral processes (motor preparation and execution) underlying word production during typewriting. To do so, we tested non-professional typers in a picture typing task while continuously recording EEG. Participants were instructed to write (by means of a standard keyboard) the corresponding name for a given picture. The lexical frequency of the words was manipulated: half of the picture names were of high-frequency while the remaining were of low-frequency. Different measures were obtained: (1) first keystroke latency and (2) keystroke latency of the subsequent letters and duration of the word. Moreover, ERPs locked to the onset of the picture presentation were analyzed to explore the temporal course of word frequency in typewriting. The results showed an effect of word frequency for the first keystroke latency but not for the duration of the word or the speed to which letter were typed (interstroke intervals). The electrophysiological results showed the expected ERP frequency effect at posterior sites: amplitudes for low-frequency words were more positive than those for high-frequency words. However, relative to previous evidence in the spoken modality, the frequency effect appeared in a later time-window. These results demonstrate two marked differences in the processing dynamics underpinning typing compared to speaking: First, central processing dynamics between speaking and typing differ already in the manner that words are accessed; second, central processing differences in typing, unlike speaking, do not cascade to peripheral processes involved in response execution.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 59 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 2%
Unknown 58 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 23 39%
Student > Master 7 12%
Professor > Associate Professor 4 7%
Researcher 4 7%
Student > Bachelor 3 5%
Other 10 17%
Unknown 8 14%
Readers by discipline Count As %
Psychology 20 34%
Linguistics 7 12%
Social Sciences 5 8%
Neuroscience 4 7%
Computer Science 3 5%
Other 7 12%
Unknown 13 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 April 2018.
All research outputs
#15,288,160
of 22,736,112 outputs
Outputs from Frontiers in Psychology
#18,521
of 29,568 outputs
Outputs of similar age
#181,584
of 280,808 outputs
Outputs of similar age from Frontiers in Psychology
#721
of 969 outputs
Altmetric has tracked 22,736,112 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 29,568 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,808 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 969 others from the same source and published within six weeks on either side of this one. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.