↓ Skip to main content

Applicability of the Compensatory Encoding Model in Foreign Language Reading: An Investigation with Chinese College English Language Learners

Overview of attention for article published in Frontiers in Psychology, May 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Applicability of the Compensatory Encoding Model in Foreign Language Reading: An Investigation with Chinese College English Language Learners
Published in
Frontiers in Psychology, May 2017
DOI 10.3389/fpsyg.2017.00681
Pubmed ID
Authors

Feifei Han

Abstract

While some first language (L1) reading models suggest that inefficient word recognition and small working memory tend to inhibit higher-level comprehension processes; the Compensatory Encoding Model maintains that slow word recognition and small working memory do not normally hinder reading comprehension, as readers are able to operate metacognitive strategies to compensate for inefficient word recognition and working memory limitation as long as readers process a reading task without time constraint. Although empirical evidence is accumulated for support of the Compensatory Encoding Model in L1 reading, there is lack of research for testing of the Compensatory Encoding Model in foreign language (FL) reading. This research empirically tested the Compensatory Encoding Model in English reading among Chinese college English language learners (ELLs). Two studies were conducted. Study one focused on testing whether reading condition varying time affects the relationship between word recognition, working memory, and reading comprehension. Students were tested on a computerized English word recognition test, a computerized Operation Span task, and reading comprehension in time constraint and non-time constraint reading. The correlation and regression analyses showed that the strength of association was much stronger between word recognition, working memory, and reading comprehension in time constraint than that in non-time constraint reading condition. Study two examined whether FL readers were able to operate metacognitive reading strategies as a compensatory way of reading comprehension for inefficient word recognition and working memory limitation in non-time constraint reading. The participants were tested on the same computerized English word recognition test and Operation Span test. They were required to think aloud while reading and to complete the comprehension questions. The think-aloud protocols were coded for concurrent use of reading strategies, classified into language-oriented strategies, content-oriented strategies, re-reading, pausing, and meta-comment. The correlation analyses showed that while word recognition and working memory were only significantly related to frequency of language-oriented strategies, re-reading, and pausing, but not with reading comprehension. Jointly viewed, the results of the two studies, complimenting each other, supported the applicability of the Compensatory Encoding Model in FL reading with Chinese college ELLs.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 5 16%
Researcher 4 13%
Student > Doctoral Student 3 9%
Student > Ph. D. Student 3 9%
Professor > Associate Professor 3 9%
Other 4 13%
Unknown 10 31%
Readers by discipline Count As %
Psychology 6 19%
Linguistics 5 16%
Social Sciences 3 9%
Neuroscience 2 6%
Medicine and Dentistry 2 6%
Other 2 6%
Unknown 12 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 May 2017.
All research outputs
#14,934,072
of 22,968,808 outputs
Outputs from Frontiers in Psychology
#16,218
of 30,126 outputs
Outputs of similar age
#184,813
of 310,942 outputs
Outputs of similar age from Frontiers in Psychology
#405
of 579 outputs
Altmetric has tracked 22,968,808 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 30,126 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one is in the 38th percentile – i.e., 38% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 310,942 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 579 others from the same source and published within six weeks on either side of this one. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.