↓ Skip to main content

Concurrent Imitative Movement During Action Observation Facilitates Accuracy of Outcome Prediction in Less-Skilled Performers

Overview of attention for article published in Frontiers in Psychology, July 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
5 X users

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
50 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Concurrent Imitative Movement During Action Observation Facilitates Accuracy of Outcome Prediction in Less-Skilled Performers
Published in
Frontiers in Psychology, July 2018
DOI 10.3389/fpsyg.2018.01262
Pubmed ID
Authors

Satoshi Unenaka, Sachi Ikudome, Shiro Mori, Hiroki Nakamoto

Abstract

Skilled athletes can predict the outcome of actions performed by others, based on the kinematic information inherent in others' actions, earlier and more accurately than less-skilled athletes. Activation of the motor cortex during action observation indicates motor simulation of other's actions in one's own motor system; this contributes to skilled outcome prediction. Thus, the present study investigated whether concurrent movements during action observation that affect motor simulation influence the accuracy of outcome prediction, namely, whether concurrent imitative movement and self-movement enhance and inhibit accuracy, respectively, based on skill level. Twelve male varsity basketball players (skilled group) and twelve male college students with no special training in basketball (less-skilled group) were required to predict the outcome of a basketball free throw by another player based on the action kinematics in the following four conditions: prediction without any action (observation), prediction with right-wrist volar flexion with maximum speed (incongruent-action), prediction with concurrent imitative movement during observation by right-wrist flexion as if imitating the model's action (imitative-motion), or prediction with concurrent self-movement by right-wrist flexion as if shooting by oneself (self-motion). The results showed that the skilled group had degraded accuracy of outcome prediction in the self-motion condition compared to the observation condition. In contrast, accuracy in the less-skilled group was facilitated in the imitative-motion condition compared to the observation condition. The findings suggest that, at least in less-skilled participants, the appropriate motor simulation that relates to skilled prediction can be virtually induced by concurrent imitative movement during the prediction task, even if they have less experience of free throws. This effect in imitative movement is likely to occur by producing identical motor commands with observed action, thereby enabling the prediction of sensory consequences and outcome accurately via a forward model. We propose that traditional perceptual training with concurrent imitative movement is likely to be an effective way to develop visual- and motor-based hybrid outcome predictions that produce superior inferences in skilled athletes.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 50 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 50 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 18%
Student > Master 7 14%
Researcher 4 8%
Lecturer > Senior Lecturer 3 6%
Student > Doctoral Student 2 4%
Other 12 24%
Unknown 13 26%
Readers by discipline Count As %
Psychology 11 22%
Sports and Recreations 10 20%
Engineering 4 8%
Neuroscience 4 8%
Nursing and Health Professions 3 6%
Other 3 6%
Unknown 15 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 August 2018.
All research outputs
#14,134,028
of 23,092,602 outputs
Outputs from Frontiers in Psychology
#14,384
of 30,473 outputs
Outputs of similar age
#178,912
of 328,918 outputs
Outputs of similar age from Frontiers in Psychology
#468
of 723 outputs
Altmetric has tracked 23,092,602 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 30,473 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one has gotten more attention than average, scoring higher than 50% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,918 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 723 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.