↓ Skip to main content

Recent Spatiotemporal Patterns of US Lung Cancer by Histologic Type

Overview of attention for article published in Frontiers in Public Health, May 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Recent Spatiotemporal Patterns of US Lung Cancer by Histologic Type
Published in
Frontiers in Public Health, May 2017
DOI 10.3389/fpubh.2017.00082
Pubmed ID
Authors

Denise Riedel Lewis, Linda W. Pickle, Li Zhu

Abstract

After a period of increasing rates, lung cancer incidence is declining in the US for men and women. We investigated lung cancer rate patterns by gender, geographic location, and histologic subtype, and for total lung cancer (TLC), for the entire study period, and for 2000-2011 from 17 surveillance, epidemiology, and end results areas. For each gender-histologic type combination, time trend plots and maps of age-adjusted rates are presented. Time trend significance was tested by joinpoint regression analysis. Spatial random effects models were applied to examine effects of sociodemographic factors, health insurance coverage, smoking, and physician density at the county level. Linked micromap plots illustrate patterns for important model predictors. Declining incidence trends occurred for TLC (p < 0.05, entire period). Squamous cell carcinoma trends increased for females only (p < 0.05). Small cell carcinoma trends declined overall, p < 0.05, but recently increased faster for females than males. Adenocarcinoma rates initially declined, but were significantly increasing by 2004, p < 0.05. Counties with higher current smoking and family poverty were strongly associated with higher risk for all gender-histologic types (p < 0.0001, for both variables). County socioeconomic status was associated with higher risk for all lung cancer subtypes for females, p < 0.02. Counties with more diagnostic radiologists were associated with higher TLC rates (p < 0.03); counties with greater primary care physician access were associated with lower TLC rates (p < 0.03). TLC incidence rates were higher in eastern and southern states than western areas. Male rates were higher than female rates along the West Coast. Males and females had similar small cell rate patterns, with higher rates in the Midwest and southeast. Squamous cell carcinoma and adenocarcinoma rate patterns were similar to TLC patterns, except for relatively higher female adenocarcinoma rates in the northeast and northwest. Geographic patterns and declining time trends for incident lung cancer are consistent with previous mortality patterns. Male-female time trend and geographic pattern differences occur by histologic type. Time trends remain significant, even after adjustment for significant covariates. Knowledge of the variation of lung cancer incidence by region and histologic type is useful for surveillance and for implementing lung cancer control efforts.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 18%
Student > Master 4 18%
Student > Bachelor 3 14%
Professor 2 9%
Student > Ph. D. Student 2 9%
Other 3 14%
Unknown 4 18%
Readers by discipline Count As %
Medicine and Dentistry 6 27%
Biochemistry, Genetics and Molecular Biology 3 14%
Psychology 2 9%
Computer Science 2 9%
Environmental Science 1 5%
Other 4 18%
Unknown 4 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 May 2017.
All research outputs
#15,459,782
of 22,973,051 outputs
Outputs from Frontiers in Public Health
#4,608
of 10,119 outputs
Outputs of similar age
#196,408
of 312,883 outputs
Outputs of similar age from Frontiers in Public Health
#49
of 84 outputs
Altmetric has tracked 22,973,051 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,119 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.0. This one has gotten more attention than average, scoring higher than 50% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 312,883 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 84 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.