↓ Skip to main content

Chondrogenesis of Human Infrapatellar Fat Pad Stem Cells on Acellular Dermal Matrix

Overview of attention for article published in Frontiers in Surgery, January 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Chondrogenesis of Human Infrapatellar Fat Pad Stem Cells on Acellular Dermal Matrix
Published in
Frontiers in Surgery, January 2016
DOI 10.3389/fsurg.2016.00003
Pubmed ID
Authors

Ken Ye, Kathy Traianedes, Peter F. M. Choong, Damian E. Myers

Abstract

Acellular dermal matrix (ADM) has been in clinical use for decades in numerous surgical applications. The ability for ADM to promote cellular repopulation, revascularisation and tissue regeneration is well documented. Adipose stem cells have the ability to differentiate into mesenchymal tissue types, including bone and cartilage. The aim of this study was to investigate the potential interaction between ADM and adipose stem cells in vitro using TGFβ3 and BMP6. Human infrapatellar fat pad-derived adipose stem cells (IPFP-ASC) were cultured with ADM derived from rat dermis in chondrogenic (TGFβ3 and BMP6) medium in vitro for 2 and 4 weeks. Histology, qPCR, and immunohistochemistry were performed to assess for markers of chondrogenesis (collagen Type II, SOX9 and proteoglycans). At 4 weeks, cell-scaffold constructs displayed cellular changes consistent with chondrogenesis, with evidence of stratification of cell layers and development of a hyaline-like cartilage layer superficially, which stained positively for collagen Type II and proteoglycans. Significant cell-matrix interaction was seen between the cartilage layer and the ADM itself with seamless integration between each layer. Real time qPCR showed significantly increased COL2A1, SOX9, and ACAN gene expression over 4 weeks when compared to control. COL1A2 gene expression remained unchanged over 4 weeks. We believe that the principles that make ADM versatile and successful for tissue regeneration are applicable to cartilage regeneration. This study demonstrates in vitro the ability for IPFP-ASCs to undergo chondrogenesis, infiltrate, and interact with ADM. These outcomes serve as a platform for in vivo modelling of ADM for cartilage repair.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 1 3%
Unknown 31 97%

Demographic breakdown

Readers by professional status Count As %
Student > Master 8 25%
Student > Ph. D. Student 5 16%
Student > Bachelor 3 9%
Researcher 3 9%
Student > Postgraduate 2 6%
Other 4 13%
Unknown 7 22%
Readers by discipline Count As %
Medicine and Dentistry 9 28%
Biochemistry, Genetics and Molecular Biology 3 9%
Nursing and Health Professions 2 6%
Engineering 2 6%
Agricultural and Biological Sciences 2 6%
Other 4 13%
Unknown 10 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 January 2016.
All research outputs
#18,436,183
of 22,840,638 outputs
Outputs from Frontiers in Surgery
#921
of 2,874 outputs
Outputs of similar age
#287,086
of 396,750 outputs
Outputs of similar age from Frontiers in Surgery
#13
of 24 outputs
Altmetric has tracked 22,840,638 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,874 research outputs from this source. They receive a mean Attention Score of 2.3. This one has gotten more attention than average, scoring higher than 51% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 396,750 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 24 others from the same source and published within six weeks on either side of this one. This one is in the 4th percentile – i.e., 4% of its contemporaries scored the same or lower than it.