↓ Skip to main content

Glial Cells in Health and Disease of the CNS

Overview of attention for book
Cover of 'Glial Cells in Health and Disease of the CNS'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Glial Cells and Integrity of the Nervous System
  3. Altmetric Badge
    Chapter 2 NG2-glia, More Than Progenitor Cells
  4. Altmetric Badge
    Chapter 3 Pharmacological Tools to Study the Role of Astrocytes in Neural Network Functions
  5. Altmetric Badge
    Chapter 4 Microglia Function in the Normal Brain
  6. Altmetric Badge
    Chapter 5 Physiological Functions of Glial Cell Hemichannels
  7. Altmetric Badge
    Chapter 6 Role of Astrocytes in Central Respiratory Chemoreception
  8. Altmetric Badge
    Chapter 7 Purine Signaling and Microglial Wrapping
  9. Altmetric Badge
    Chapter 8 Oligodendrocytes: Functioning in a Delicate Balance Between High Metabolic Requirements and Oxidative Damage
  10. Altmetric Badge
    Chapter 9 Schwann Cell and Axon: An Interlaced Unit—From Action Potential to Phenotype Expression
  11. Altmetric Badge
    Chapter 10 Glial Cells in Health and Disease of the CNS
  12. Altmetric Badge
    Chapter 11 Astrocyte Dysfunction in Developmental Neurometabolic Diseases
  13. Altmetric Badge
    Chapter 12 Microglia in Cancer: For Good or for Bad?
  14. Altmetric Badge
    Chapter 13 Peripheral Inflammation and Demyelinating Diseases
  15. Altmetric Badge
    Chapter 14 Regulation of Oligodendrocyte Differentiation and Myelination by Nuclear Receptors: Role in Neurodegenerative Disorders
  16. Altmetric Badge
    Chapter 15 The Role of Galectin-3: From Oligodendroglial Differentiation and Myelination to Demyelination and Remyelination Processes in a Cuprizone-Induced Demyelination Model
  17. Altmetric Badge
    Chapter 16 Prenatal Systemic Hypoxia-Ischemia and Oligodendroglia Loss in Cerebellum
Attention for Chapter 7: Purine Signaling and Microglial Wrapping
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
20 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Purine Signaling and Microglial Wrapping
Chapter number 7
Book title
Glial Cells in Health and Disease of the CNS
Published in
Advances in experimental medicine and biology, January 2016
DOI 10.1007/978-3-319-40764-7_7
Pubmed ID
Book ISBNs
978-3-31-940762-3, 978-3-31-940764-7
Authors

Bernardo Castellano, Mar Bosch-Queralt, Beatriz Almolda, Nàdia Villacampa, Berta González, Castellano, Bernardo, Bosch-Queralt, Mar, Almolda, Beatriz, Villacampa, Nàdia, González, Berta

Abstract

Microglial cells are highly dynamic cells with processes continuously moving to survey the surrounding territory. Microglia possess a broad variety of surface receptors and subtle changes in their microenvironment cause microglial cell processes to extend, retract, and interact with neuronal synaptic contacts. When the nervous system is disturbed, microglia activate, proliferate, and migrate to sites of injury in response to alert signals. Released nucleotides like ATP and UTP are among the wide range of molecules promoting microglial activation and guiding their migration and phagocytic function. The increased concentration of nucleotides in the extracellular space could be involved in the microglial wrapping found around injured neurons in various pathological conditions, especially after peripheral axotomy. Microglial wrappings isolate injured neurons from synaptic inputs and facilitate the molecular dialog between endangered or injured neurons and activated microglia. Astrocytes may also participate in neuronal ensheathment. Degradation of ATP by microglial ecto-nucleotidases and the expression of various purine receptors might be decisive in regulating the function of enwrapping glial cells and in determining the fate of damaged neurons, which may die or may regenerate their axons and survive.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 20 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 5%
Unknown 19 95%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 5 25%
Researcher 4 20%
Student > Ph. D. Student 3 15%
Librarian 1 5%
Professor 1 5%
Other 3 15%
Unknown 3 15%
Readers by discipline Count As %
Neuroscience 7 35%
Medicine and Dentistry 5 25%
Agricultural and Biological Sciences 2 10%
Biochemistry, Genetics and Molecular Biology 1 5%
Unspecified 1 5%
Other 0 0%
Unknown 4 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 September 2017.
All research outputs
#15,478,452
of 23,001,641 outputs
Outputs from Advances in experimental medicine and biology
#2,515
of 4,961 outputs
Outputs of similar age
#232,133
of 394,604 outputs
Outputs of similar age from Advances in experimental medicine and biology
#221
of 444 outputs
Altmetric has tracked 23,001,641 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,961 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one is in the 37th percentile – i.e., 37% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 394,604 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 444 others from the same source and published within six weeks on either side of this one. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.