↓ Skip to main content

Chronic exposure of astrocytes to interferon-α reveals molecular changes related to Aicardi–Goutières syndrome

Overview of attention for article published in Brain, January 2013
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
42 Dimensions

Readers on

mendeley
76 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Chronic exposure of astrocytes to interferon-α reveals molecular changes related to Aicardi–Goutières syndrome
Published in
Brain, January 2013
DOI 10.1093/brain/aws321
Pubmed ID
Authors

Eloy Cuadrado, Machiel H. Jansen, Jasper Anink, Lidia De Filippis, Angelo L. Vescovi, Colin Watts, Eleonora Aronica, Elly M. Hol, Taco W. Kuijpers

Abstract

Aicardi-Goutières syndrome is a genetically determined infantile encephalopathy, manifesting as progressive microcephaly, psychomotor retardation, and in ∼25% of patients, death in early childhood. Aicardi-Goutières syndrome is caused by mutations in any of the genes encoding TREX1, RNASEH2-A, -B, -C and SAMHD1, with protein dysfunction hypothesized to result in the accumulation of nucleic acids within the cell, thus triggering an autoinflammatory response with increased interferon-α production. Astrocytes have been identified as a major source of interferon-α production in the brains of patients with Aicardi-Goutières syndrome. Here, we study the effect of interferon-α treatment on astrocytes derived from immortalized human neural stem cells. Chronic interferon-α treatment promoted astrocyte activation and a reduction in cell proliferation. Moreover, chronic exposure resulted in an alteration of genes and proteins involved in the stability of white matter (ATF4, eIF2Bα, cathepsin D, cystatin F), an increase of antigen-presenting genes (human leukocyte antigen class I) and downregulation of pro-angiogenic factors and other cytokines (vascular endothelial growth factor and IL-1). Interestingly, withdrawal of interferon-α for 7 days barely reversed these cellular alterations, demonstrating that the interferon-α mediated effects persist over time. We confirmed our in vitro findings using brain samples from patients with Aicardi-Goutières syndrome. Our results support the idea of interferon-α as a key factor in the pathogenesis of Aicardi-Goutières syndrome relating to the observed leukodystrophy and microangiopathy. Because of the sustained interferon-α effect, even after withdrawal, therapeutic targets for Aicardi-Goutières syndrome, and other interferon-α-mediated encephalopathies, may include downstream interferon-α signalling cascade effectors rather than interferon-α alone.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 76 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 1%
Unknown 75 99%

Demographic breakdown

Readers by professional status Count As %
Researcher 16 21%
Student > Ph. D. Student 13 17%
Student > Master 9 12%
Student > Doctoral Student 4 5%
Student > Bachelor 4 5%
Other 15 20%
Unknown 15 20%
Readers by discipline Count As %
Medicine and Dentistry 15 20%
Neuroscience 11 14%
Agricultural and Biological Sciences 8 11%
Biochemistry, Genetics and Molecular Biology 7 9%
Immunology and Microbiology 5 7%
Other 10 13%
Unknown 20 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 February 2013.
All research outputs
#22,759,802
of 25,374,647 outputs
Outputs from Brain
#7,254
of 7,626 outputs
Outputs of similar age
#258,543
of 290,065 outputs
Outputs of similar age from Brain
#92
of 103 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,626 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 27.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 290,065 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 103 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.