↓ Skip to main content

Tight repulsion linkage between Sr36 and Sr39 was revealed by genetic, cytogenetic and molecular analyses

Overview of attention for article published in Theoretical and Applied Genetics, December 2016
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (73rd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (51st percentile)

Mentioned by

twitter
9 X users

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Tight repulsion linkage between Sr36 and Sr39 was revealed by genetic, cytogenetic and molecular analyses
Published in
Theoretical and Applied Genetics, December 2016
DOI 10.1007/s00122-016-2837-5
Pubmed ID
Authors

Bosco Chemayek, Urmil K. Bansal, Naeela Qureshi, Peng Zhang, William W. Wagoire, Harbans S. Bariana

Abstract

The shortening of Aegilops speltoides segment did not facilitate recombination between stem rust resistance genes Sr36 and Sr39 . Robustness of marker rwgs28 for marker-assisted selection of Sr39 was demonstrated. Stem rust resistance genes Sr39 and Sr36 were transferred from Aegilops speltoides and Triticum timopheevii, respectively, to chromosome 2B of wheat. Genetic stocks RL6082 and RWG1 carrying Sr39 on a large and a shortened Ae. speltoides segments, respectively, and the Sr36-carrying Australian wheat cultivar Cook were used in this study. This investigation was planned to determine the genetic relationship between these genes. Stem rust tests on F3 populations derived from RL6082/Cook and RWG1/Cook crosses showed tight repulsion linkage between Sr39 and Sr36. The genomic in situ hybridization analysis of heterozygous F3 family from the RWG1/Cook population showed that the translocated segments do not overlap. Meiotic analysis on the F1 plant from RWG1/Cook showed two univalents at the metaphase and anaphase stages in a majority of the cells indicating absence of pairing. Since meiotic pairing has been reported to initiate at the telomere, pairing and recombination may be inhibited due to very little wheat chromatin in the distal end of the chromosome arm 2BS in RWG1. The Sr39-carrying large Ae. speltoides segment transmitted preferentially in the RL6082/Cook F3 population, whereas the Sr36-carrying T. timopheevii segment over-transmitted in the RWG1/Cook cross. Genotyping with the co-dominant Sr39- and Sr36-linked markers rwgs28 and stm773-2, respectively, matched the phenotypic classification of F3 families. The RWG1 allele amplified by rwgs28 was diagnostic for the shortened Ae. speltoides segment and alternate alleles were amplified in 29 Australian cultivars. Marker rwgs28 will be useful in marker-assisted pyramiding of Sr39 with other genes.

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 22%
Student > Master 3 17%
Student > Bachelor 2 11%
Student > Doctoral Student 2 11%
Professor 1 6%
Other 0 0%
Unknown 6 33%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 44%
Biochemistry, Genetics and Molecular Biology 2 11%
Environmental Science 1 6%
Medicine and Dentistry 1 6%
Unknown 6 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 April 2017.
All research outputs
#6,282,788
of 23,794,258 outputs
Outputs from Theoretical and Applied Genetics
#1,111
of 3,565 outputs
Outputs of similar age
#111,099
of 420,102 outputs
Outputs of similar age from Theoretical and Applied Genetics
#17
of 35 outputs
Altmetric has tracked 23,794,258 research outputs across all sources so far. This one has received more attention than most of these and is in the 73rd percentile.
So far Altmetric has tracked 3,565 research outputs from this source. They receive a mean Attention Score of 4.9. This one has gotten more attention than average, scoring higher than 68% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 420,102 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.
We're also able to compare this research output to 35 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.