↓ Skip to main content

Do Mesenchymal Stem Cells Derived From Atypical Lipomatous Tumors Have Greater Differentiation Potency Than Cells From Normal Adipose Tissues?

Overview of attention for article published in Clinical Orthopaedics & Related Research, February 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

twitter
4 X users
facebook
1 Facebook page

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Do Mesenchymal Stem Cells Derived From Atypical Lipomatous Tumors Have Greater Differentiation Potency Than Cells From Normal Adipose Tissues?
Published in
Clinical Orthopaedics & Related Research, February 2017
DOI 10.1007/s11999-017-5259-z
Pubmed ID
Authors

Hiroyuki Inatani, Norio Yamamoto, Katsuhiro Hayashi, Hiroaki Kimura, Akihiko Takeuchi, Shinji Miwa, Takashi Higuchi, Kensaku Abe, Yuta Taniguchi, Satoshi Yamada, Kiyofumi Asai, Takanobu Otsuka, Hiroyuki Tsuchiya

Abstract

The p53 protein in mesenchymal stem cells (MSCs) regulates differentiation to osteogenic or adipogenic lineage. Because p53 function is depressed in most malignancies, if MSCs in malignancy also have p53 hypofunction, differentiation therapy to osteogenic or adipogenic lineage may be an effective treatment. We therefore wished to begin to explore this idea by evaluating atypical lipomatous tumor/well-differentiated liposarcoma (ALT/WDL) cells, because murine double minute 2 (MDM2) gene amplification, which leads to p53 hypofunction, is found in almost all ALT/WDLs. We compared osteogenic and adipogenic differentiation potency between MSCs isolated and cultured from normal adipose tissues and ALT/WDLs from the same patients. During tumor resections in six patients with ALT/WDL, we analyzed 3 mL of tumor, and for comparison, we harvested a similar amount of normal-appearing subcutaneous adipose tissue from an area remote from the tumor for comparison. Adipogenic differentiation potency was quantitatively assessed using spectrometry after oil red O staining. Osteogenic differentiation potency was semiquantitatively assessed by measuring a specific colored area after alkaline phosphatase (ALP) and alizarin red S staining. ALP is related to preosseous cellular metabolism, and alizarin red is related to calcium deposits in cell culture. There were three observers for each assessment, and each assessment (including induced-differentiation and histologic analysis) was performed in duplicate. We then analyzed the mechanism of the difference of osteogenic differentiation potency using the MDM2-specific inhibitor Nutlin-3 at various concentrations. In terms of adipogenic differentiation potency, contrary to our expectations, more fatty acid droplets were observed in MSCs derived from normal fat than in MSCs derived from ALT/WDL, although we found no significant difference between MSCs derived from ALT/WDL and MSCs derived from normal fat; the mean differentiation potency values (normal adipose tissue versus ALT/WDL) (± SD) were 0.34 (SD, ± 0.13; 95% CI, 0.24-0.44) versus 0.25 (SD, ± 0.10; 95% CI, 0.18-0.33; p = 0.22). By contrast, we found greater osteogenic differentiation potency in MSCs derived from ALT/WDL than in MSCs derived from normal fat. The mean differentiation potency values (normal adipose tissue versus ALT/WDL) (±SD) based on ALP staining was 1.0 versus 17 (SD, ± 36; 95% CI, -2.8 to 38; p = 0.04). However, we found no differences based on alizarin red S staining; mean differentiation potency value (normal adipose tissue versus ALT/WDL) (± SD) was 1.0 versus 4.2 (SD, ± 4.8; 95% CI, 1.3-7.2; p = 0.58). The gap of osteogenic differentiation potency between MSCs from normal adipose tissue and ALT/WDL was decreased as MDM2-inhibitor Nutlin-3 concentration increased. MSCs derived from ALT/WDL had higher osteogenic differentiation potency based on ALP staining, which disappeared as Nutlin-3 concentration increased, suggesting that could be caused by amplified MDM2 in ALT/WDL. Future laboratory studies might mechanistically confirm the gene and protein expression, and based on the mechanism of the gap of differentiation potency, if p53 contrast between MSCs in tumor and normal tissue could be stimulated, less-toxic and more-effective differentiation therapy to MSCs in malignancies might be developed.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 29 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 10%
Student > Master 3 10%
Professor 3 10%
Student > Doctoral Student 2 7%
Student > Postgraduate 2 7%
Other 6 21%
Unknown 10 34%
Readers by discipline Count As %
Medicine and Dentistry 13 45%
Biochemistry, Genetics and Molecular Biology 4 14%
Computer Science 1 3%
Unknown 11 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 June 2018.
All research outputs
#14,477,297
of 25,382,440 outputs
Outputs from Clinical Orthopaedics & Related Research
#4,409
of 7,300 outputs
Outputs of similar age
#212,342
of 424,587 outputs
Outputs of similar age from Clinical Orthopaedics & Related Research
#44
of 97 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,300 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.8. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 424,587 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 97 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.