↓ Skip to main content

Optimal resource allocation enables mathematical exploration of microbial metabolic configurations

Overview of attention for article published in Journal of Mathematical Biology, March 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Optimal resource allocation enables mathematical exploration of microbial metabolic configurations
Published in
Journal of Mathematical Biology, March 2017
DOI 10.1007/s00285-017-1118-5
Pubmed ID
Authors

Laurent Tournier, Anne Goelzer, Vincent Fromion

Abstract

Central to the functioning of any living cell, the metabolic network is a complex network of biochemical reactions. It may also be viewed as an elaborate production system, integrating a diversity of internal and external signals in order to efficiently produce the energy and the biochemical precursors to ensure all cellular functions. Even in simple organisms like bacteria, it shows a striking level of coordination, adapting to very different growth media. Constraint-based models constitute an efficient mathematical framework to compute optimal metabolic configurations, at the scale of a whole genome. Combining the constraint-based approach "Resource Balance Analysis" with combinatorial optimization techniques, we propose a general method to explore these configurations, based on the inference of logical rules governing the activation of metabolic fluxes in response to diverse extracellular media. Using the concept of partial Boolean functions, we notably introduce a novel tractable algorithm to infer monotone Boolean functions on a minimal support. Monotonicity seems particularly relevant in this context, since the orderliness exhibited by the metabolic network's dynamical behavior is expected to give rise to relatively simple rules. First results are promising, as the application of the method on Bacillus subtilis central carbon metabolism allows to recover known regulations as well as to investigate lesser known parts of the global regulatory network.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 29 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 21%
Researcher 5 17%
Student > Master 2 7%
Professor 2 7%
Student > Postgraduate 2 7%
Other 1 3%
Unknown 11 38%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 14%
Computer Science 3 10%
Mathematics 2 7%
Medicine and Dentistry 2 7%
Environmental Science 1 3%
Other 5 17%
Unknown 12 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 April 2017.
All research outputs
#20,412,387
of 22,962,258 outputs
Outputs from Journal of Mathematical Biology
#544
of 657 outputs
Outputs of similar age
#269,302
of 308,953 outputs
Outputs of similar age from Journal of Mathematical Biology
#14
of 17 outputs
Altmetric has tracked 22,962,258 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 657 research outputs from this source. They receive a mean Attention Score of 3.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 308,953 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 17 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.