↓ Skip to main content

The neurotransmitter glutamate and human T cells: glutamate receptors and glutamate-induced direct and potent effects on normal human T cells, cancerous human leukemia and lymphoma T cells, and…

Overview of attention for article published in Journal of Neural Transmission, March 2014
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (86th percentile)
  • High Attention Score compared to outputs of the same age and source (83rd percentile)

Mentioned by

news
1 news outlet
twitter
2 X users

Readers on

mendeley
109 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The neurotransmitter glutamate and human T cells: glutamate receptors and glutamate-induced direct and potent effects on normal human T cells, cancerous human leukemia and lymphoma T cells, and autoimmune human T cells
Published in
Journal of Neural Transmission, March 2014
DOI 10.1007/s00702-014-1167-5
Pubmed ID
Authors

Yonatan Ganor, Mia Levite

Abstract

Glutamate is the most important excitatory neurotransmitter of the nervous system, critically needed for the brain's development and function. Glutamate has also a signaling role in peripheral organs. Herein, we discuss glutamate receptors (GluRs) and glutamate-induced direct effects on human T cells. T cells are the most important cells of the adaptive immune system, crucially needed for eradication of all infectious organisms and cancer. Normal, cancer and autoimmune human T cells express functional ionotropic and metabotropic GluRs. Different GluR subtypes are expressed in different T cell subtypes, and in resting vs. activated T cells. Glutamate by itself, at low physiological 10(-8)M to 10(-5)M concentrations and via its several types of GluRs, activates many key T cell functions in normal human T cells, among them adhesion, migration, proliferation, intracellular Ca(2+) fluxes, outward K(+) currents and more. Glutamate also protects activated T cells from antigen-induced apoptotic cell death. By doing all that, glutamate can improve substantially the function and survival of resting and activated human T cells. Yet, glutamate's direct effects on T cells depend dramatically on its concentration and might be inhibitory at excess pathological 10(-3)M glutamate concentrations. The effects of glutamate on T cells also depend on the specific GluRs types expressed on the target T cells, the T cell's type and subtype, the T cell's resting or activated state, and the presence or absence of other simultaneous stimuli besides glutamate. Glutamate also seems to play an active role in T cell diseases. For example, glutamate at several concentrations induces or enhances significantly very important functions of human T-leukemia and T-lymphoma cells, among them adhesion to the extracellular matrix, migration, in vivo engraftment into solid organs, and the production and secretion of the cancer-associated matrix metalloproteinase MMP-9 and its inducer CD147. Glutamate induces all these effects via activation of GluRs highly expressed in human T-leukemia and T-lymphoma cells. Glutamate also affects T cell-mediated autoimmune diseases. With regards to multiple sclerosis (MS), GluR3 is highly expressed in T cells of MS patients, and upregulated significantly during relapse and when there is neurological evidence of disease activity. Moreover, glutamate or AMPA (10(-8)M to 10(-5)M) enhances the proliferation of autoreactive T cells of MS patients in response to myelin proteins. Thus, glutamate may play an active role in MS. Glutamate and its receptors also seem to be involved in autoimmune rheumatoid arthritis and systemic lupus erythematosus. Finally, T cells can produce and release glutamate that in turn affects other cells, and during the contact between T cells and dendritic cells, the latter cells release glutamate that has potent effects on the T cells. Together, these evidences show that glutamate has very potent effects on normal, and also on cancer and autoimmune pathological T cells. Moreover, these evidences suggest that glutamate and glutamate-receptor agonists might be used for inducing and boosting beneficial T cell functions, for example, T cell activity against cancer and infectious organisms, and that glutamate-receptor antagonists might be used for preventing glutamate-induced activating effects on detrimental autoimmune and cancerous T cells.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 109 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Netherlands 1 <1%
Ireland 1 <1%
Unknown 107 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 20 18%
Student > Bachelor 16 15%
Researcher 10 9%
Student > Master 10 9%
Student > Postgraduate 5 5%
Other 17 16%
Unknown 31 28%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 17 16%
Medicine and Dentistry 12 11%
Agricultural and Biological Sciences 12 11%
Immunology and Microbiology 9 8%
Neuroscience 7 6%
Other 13 12%
Unknown 39 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 June 2019.
All research outputs
#2,869,691
of 22,751,628 outputs
Outputs from Journal of Neural Transmission
#157
of 1,763 outputs
Outputs of similar age
#30,276
of 221,915 outputs
Outputs of similar age from Journal of Neural Transmission
#3
of 18 outputs
Altmetric has tracked 22,751,628 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,763 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.5. This one has done particularly well, scoring higher than 90% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 221,915 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 86% of its contemporaries.
We're also able to compare this research output to 18 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 83% of its contemporaries.