↓ Skip to main content

Transcriptional activity of human brain estrogen receptor-α splice variants: Evidence for cell type-specific regulation

Overview of attention for article published in Brain Research Protocols, January 2013
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Transcriptional activity of human brain estrogen receptor-α splice variants: Evidence for cell type-specific regulation
Published in
Brain Research Protocols, January 2013
DOI 10.1016/j.brainres.2012.12.050
Pubmed ID
Authors

T.A. Ishunina, A.A. Sluiter, D.F. Swaab, R.W.H. Verwer

Abstract

Estrogen receptor α (ERα) isoforms with complex types of alternative splicing are naturally present in the human brain and may affect canonical receptor signaling. In the present study we investigated transcriptional activity of common ERα splice variants from this group with different molecular defects: MB1 (intron retention), TADDI (small deletion between exons 3 and 4 with an insert), the Δ (deletion) 3(⁎)-7(*)/819 (complete skipping of exons 4, 5 and 6 and partial deletion of exons 3 and 7) and the Δ3-6 (lacking exons 3, 4, 5 and 6) in HeLa and M17 cells upon stimulation with (17β)estradiol or insulin-like growth factor 1 (IGF-1). In HeLa cells, all these splice variants showed the dominant negative function that was more pronounced for the TADDI. In M17 cells the dominant negative variants appeared to be the MB1 and the Δ3-6, whereas TADDI turned out to be a clearly dominant positive variant. In M17 cells mRNA levels of Δ3-6 and Δ3(*)-7(*)/819 variants increased following (17β)estradiol administration. In Hela cells (17β)estradiol up-regulated the IGF-1 receptor mRNA levels in cultures transfected with MB1, TADDI and Δ3(*)-7(*)/819. Our data demonstrate that ERα splice variants show differential levels of the transcriptional activity in a cell type-specific way and that IGF-1 signaling pathways are differentially employed in a cell-type specific manner depending on the level of the discrete ERα splice variants expressed. Functional properties of various ERα splice variants and their cell type-specificity should, thus, be considered as potential confounders of estrogen therapy effects on the brain.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 3 17%
Student > Master 3 17%
Student > Bachelor 3 17%
Researcher 2 11%
Student > Ph. D. Student 2 11%
Other 4 22%
Unknown 1 6%
Readers by discipline Count As %
Medicine and Dentistry 4 22%
Business, Management and Accounting 2 11%
Biochemistry, Genetics and Molecular Biology 2 11%
Neuroscience 2 11%
Agricultural and Biological Sciences 2 11%
Other 5 28%
Unknown 1 6%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 February 2014.
All research outputs
#17,286,645
of 25,374,917 outputs
Outputs from Brain Research Protocols
#8,627
of 10,776 outputs
Outputs of similar age
#195,312
of 292,509 outputs
Outputs of similar age from Brain Research Protocols
#35
of 51 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,776 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.0. This one is in the 14th percentile – i.e., 14% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 292,509 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 51 others from the same source and published within six weeks on either side of this one. This one is in the 19th percentile – i.e., 19% of its contemporaries scored the same or lower than it.