↓ Skip to main content

Polycomb Protein EED is Required for Silencing of Pluripotency Genes upon ESC Differentiation

Overview of attention for article published in Stem Cell Reviews and Reports, August 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Readers on

mendeley
73 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Polycomb Protein EED is Required for Silencing of Pluripotency Genes upon ESC Differentiation
Published in
Stem Cell Reviews and Reports, August 2014
DOI 10.1007/s12015-014-9550-z
Pubmed ID
Authors

Nadine Obier, Qiong Lin, Pierre Cauchy, Vroni Hornich, Martin Zenke, Matthias Becker, Albrecht M. Müller

Abstract

Eed (embryonic ectoderm development) is a core component of the Polycomb Repressive Complex 2 (PRC2) which catalyzes the methylation of histone H3 lysine 27 (H3K27). Trimethylated H3K27 (H3K27me3) can act as a signal for PRC1 recruitment in the process of gene silencing and chromatin condensation. Previous studies with Eed KO ESCs revealed a failure to down-regulate a limited list of pluripotency factors in differentiating ESCs. Our aim was to analyze the consequences of Eed KO for ESC differentiation. To this end we first analyzed ESC differentiation in the absence of Eed and employed in silico data to assess pluripotency gene expression and H3K27me3 patterns. We linked these data to expression analyses of wildtype and Eed KO ESCs. We observed that in wildtype ESCs a subset of pluripotency genes including Oct4, Nanog, Sox2 and Oct4 target genes progressively gain H3K27me3 during differentiation. These genes remain expressed in differentiating Eed KO ESCs. This suggests that the deregulation of a limited set of pluripotency factors impedes ESC differentiation. Global analyses of H3K27me3 and Oct4 ChIP-seq data indicate that in ESCs the binding of Oct4 to promoter regions is not a general predictor for PRC2-mediated silencing during differentiation. However, motif analyses suggest a binding of Oct4 together with Sox2 and Nanog at promoters of genes that are PRC2-dependently silenced during differentiation. In summary, our data further characterize Eed function in ESCs by showing that Eed/PRC2 is essential for the onset of ESC differentiation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 73 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Hong Kong 1 1%
Unknown 72 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 21 29%
Researcher 11 15%
Student > Bachelor 11 15%
Student > Master 9 12%
Professor 3 4%
Other 7 10%
Unknown 11 15%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 34 47%
Agricultural and Biological Sciences 21 29%
Medicine and Dentistry 4 5%
Neuroscience 1 1%
Chemistry 1 1%
Other 0 0%
Unknown 12 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 January 2015.
All research outputs
#15,063,934
of 25,373,627 outputs
Outputs from Stem Cell Reviews and Reports
#559
of 1,035 outputs
Outputs of similar age
#122,398
of 247,166 outputs
Outputs of similar age from Stem Cell Reviews and Reports
#14
of 22 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 40th percentile – i.e., 40% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,035 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one is in the 45th percentile – i.e., 45% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 247,166 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.
We're also able to compare this research output to 22 others from the same source and published within six weeks on either side of this one. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.