↓ Skip to main content

Mechanistic insight into osteoclast differentiation in osteoimmunology

Overview of attention for article published in Journal of Molecular Medicine, January 2005
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
349 Dimensions

Readers on

mendeley
136 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Mechanistic insight into osteoclast differentiation in osteoimmunology
Published in
Journal of Molecular Medicine, January 2005
DOI 10.1007/s00109-004-0612-6
Pubmed ID
Authors

Hiroshi Takayanagi

Abstract

Recently a close relationship between the immune and skeletal systems or the interdisciplinary field called osteoimmunology has attracted much attention due to the observations that bone destruction is caused by an abnormal activation of the immune system in rheumatoid arthritis, and that mice lacking immunomodulatory molecules often exhibit an unexpected bone phenotype. Osteoclasts are cells of monocyte/macrophage origin that degrade the bone matrix. They are among the key players in the control of bone metabolism in health and disease. Receptor activator of NF-kappaB ligand (RANKL), a tumor necrosis factor (TNF) family cytokine, induces the differentiation of osteoclasts in the presence of macrophage-colony stimulating factor. RANKL activates TRAF6, c-Fos, and calcium signaling pathways, all of which are indispensable for the induction and activation of nuclear factor of activated T cells (NFAT) c1, the master transcription factor for osteoclastogenesis. The autoamplification of NFATc1 gene results in the efficient induction of osteoclast-specific genes. An AP-1 transcription factor complex containing c-Fos plays a crucial role in these processes, although results in conditional knockout mice show that Jun family members have a redundant role. The immunoreceptor tyrosine-based activation motif (ITAM) is an important signaling component for a number of receptors in the immune system including T-cell, B-cell, NK-cell, and Fc receptors, but its contribution to the skeletal system remains unclarified. In search for the calcium-mobilizing mechanism during osteoclastogenesis we determined that multiple immunoglobulinlike receptors associated with ITAM-harboring adaptors, Fc receptor common gamma chain (FcRgamma), and DNAX-activating protein (DAP) 12, are essential for osteoclastogenesis. In osteoclast precursor cells FcRgamma-associated receptors include osteoclast-associated receptor and paired immunoglobulinlike receptor A, while triggering receptor expressed in myeloid cells 2 and signal-regulatory protein beta1 preferentially associate with DAP12. In cooperation with RANKL these receptors activate phospholipase Cgamma and calcium signaling essential for the induction of NFATc1 through ITAM phosphorylation. Thus we have established the importance of the ITAM-mediated costimulatory signals in RANKL-induced osteoclast differentiation, which is analogous to the role of costimulatory signals in the immune system. Here we summarize recent advances in the study of signaling mechanism of osteoclast differentiation in the context of osteoimmunology.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 136 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 2 1%
Japan 2 1%
United Kingdom 1 <1%
Germany 1 <1%
China 1 <1%
United States 1 <1%
Unknown 128 94%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 21 15%
Researcher 21 15%
Student > Master 19 14%
Student > Postgraduate 15 11%
Student > Doctoral Student 11 8%
Other 28 21%
Unknown 21 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 44 32%
Medicine and Dentistry 30 22%
Biochemistry, Genetics and Molecular Biology 17 13%
Pharmacology, Toxicology and Pharmaceutical Science 7 5%
Immunology and Microbiology 4 3%
Other 11 8%
Unknown 23 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 January 2015.
All research outputs
#18,388,295
of 22,776,824 outputs
Outputs from Journal of Molecular Medicine
#1,251
of 1,550 outputs
Outputs of similar age
#135,543
of 141,442 outputs
Outputs of similar age from Journal of Molecular Medicine
#14
of 14 outputs
Altmetric has tracked 22,776,824 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,550 research outputs from this source. They receive a mean Attention Score of 5.0. This one is in the 13th percentile – i.e., 13% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 141,442 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 2nd percentile – i.e., 2% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 14 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.